摘要:塑料被称为顽固的材料,在自然界中很难降解,如果环境无法正确管理,则会导致其积累并威胁到环境。有关塑料降解的研究最近引起了很多关注。这项研究旨在确定从垃圾填埋场中塑料废物中分离出的真菌的多样性,并确定分离株的潜在塑料降解能力。从印度尼西亚的Medan Marelan的Terjun垃圾填埋场收集塑料废物样品。真菌直接在马铃薯葡萄糖琼脂培养基上分离,并在宏观上和显微镜上进行表征。塑料降解势。塑料板用于测试真菌的生物降解能力。24种不同的真菌形态型成功地从塑料废物中纯化,其中五种分离株显示出更好的生长。分子鉴定表明,五个电势分离株属于不同种类的紫solani(LDPE5),botryosphaeria laricina(lldpe10),曲霉菌(hdpe1),阿斯皮格鲁斯·弗拉维斯(Aspergillus flavus flavus flavus flavus(hdpe3)和植物(hdpe3)和植物(pp5)。生物降解测试表明,分离株LDPE5表现出最佳活性,45天后塑料板的重量减小了20.83%,然后是分离株LLDPE10,重量减轻了6.49%。扫描电子显微照片显示塑料片的退化片的表面变得粗糙而波浪状。傅立叶变换红外分析显示塑料片上新功能组的形成。然后,这表明垃圾填埋场中的真菌在生物降解过程中起着重要作用。关键字:多样性,真菌,身份证明,垃圾填埋,塑料退化简介
塑料具有多种机械和热性能,已成为世界各地现代生活中必不可少的产品 [1,2],这不仅是因为它们制造成本低、稳定性和耐用性,还因为它们用途广泛。由于这些优势,根据欧洲塑料协会 (Plastics Europe) 的报告,塑料产量自 20 世纪 50 年代以来一直在稳步上升,到 2020 年已达到 3.67 亿吨 [3,4]。制造的塑料大部分用于包装短寿命产品的瓶子和袋子,导致大量一次性塑料的消费,这些塑料很容易被丢弃 [4,5]。这些活动产生的大量塑料导致数百万公吨的塑料废物在环境和垃圾填埋场中堆积 [2,6,7],造成毁灭性的环境污染,影响生态系统、野生动植物和人类健康,此外还会产生废物管理问题 [2,4,5,8]。其中,在环境中污染和积累为固体废物的最常见塑料类型是聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚乙烯(LDPE-HDPE)、氯乙烯(PVC)、聚氨酯(PU)和
拉古纳大学(ULL)。加那利群岛的公共卫生,拉古纳大学(ULL)。sáNchez,◦,◦sáNchez,◦,◦sánchez,◦38206大学的Crupogy Hospital Isners(HUC)。 Cherns@Ed
1 1,达卡工程技术大学机械工程系(二重奏),加兹普尔1707年,孟加拉国2材料与冶金工程系,达卡工程与技术大学(二重奏),加兹普尔1707年,孟加拉国邦加拉德省3核安全部,班克斯群岛,班克斯群岛1707年,班克斯群岛, IUBAT国际商业农业与技术大学机械工程,达卡1230,孟加拉国5物理系,理学院,Jazan University,P.O。 Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O. Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.1,达卡工程技术大学机械工程系(二重奏),加兹普尔1707年,孟加拉国2材料与冶金工程系,达卡工程与技术大学(二重奏),加兹普尔1707年,孟加拉国邦加拉德省3核安全部,班克斯群岛,班克斯群岛1707年,班克斯群岛, IUBAT国际商业农业与技术大学机械工程,达卡1230,孟加拉国5物理系,理学院,Jazan University,P.O。Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O. Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O.Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.); mmrahman@kau.edu.sa(m.m.r.)
本案例研究中使用的名称和材料的呈现方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划分及其经济制度或发展程度发表任何意见。摘录可在未经授权的情况下复制,但必须注明来源。本出版物中表达的观点不一定反映联合国人类住区规划署 (UN-Habitat) 或其成员国的观点。
塑料需求随着人口增长,工业化和城市化而扩大。塑料由于其有用的特性而无与伦比,并用于每天准备大量重要商品。本文包含了基于石油的塑料的不同种类和应用,以及与其使用相关的缺点,即其非生物降解性会导致它们在环境中持续很长时间。此外,对于产生的大量塑料废物,没有足够的有效处理技术;因此,塑料垃圾在环境中积聚并危及它。限制塑料的使用是为了保护环境。这可以在生物塑料的帮助下完成,这是塑料的绝佳替代品。在本文中介绍了不同种类的生物塑料及其在不同培养基,土壤堆肥和水生系统中的生物降解性。沿途,已经探索了生物塑料的不同领域。本研究还涉及塑料聚合和生物降解的潜在机制以及在全球市场中生物塑料的当前状态。
摘要:塑料在现代生活中发挥着重要作用,目前塑料回收利用的发展要求很高且具有挑战性。为了缓解这一困境,一种选择是开发在整个材料生命周期中与环境兼容的新型可持续生物塑料。我们报道了一种由天然 DNA 和生物质衍生的离子聚合物制成的可持续生物塑料,称为 DNA 塑料。可持续性涉及 DNA 塑料的生产、使用和报废选择的所有方面:(1)原材料来自生物可再生资源;(2)水处理策略对环境友好,不涉及高能耗、使用有机溶剂和产生副产物;(3)实现可回收和非破坏性利用,显着延长塑料的使用寿命;(4)废塑料的处理遵循两条绿色路线,包括废塑料的回收利用和温和条件下酶引发的可控降解。此外,DNA塑料可以“水焊接”成任意设计的产品,例如塑料杯。这项工作提供了一种将生物基水凝胶转化为生物塑料的解决方案,并展示了DNA塑料的闭环回收,这将推动可持续材料的发展。■ 简介
微/纳米塑料越来越被认为是陆地生态系统中普遍存在的污染物,尤其是在土壤中。土壤中微/纳米塑料的命运取决于多种因素,包括土壤特性、pH 值、有机物含量、水分含量和微生物活动等。研究表明,微/纳米塑料可以保留在土壤基质中,影响其降解速率和运输潜力。微/纳米塑料可能会发生碎裂或聚集,从而改变其环境行为。此外,微/纳米塑料会破坏土壤生态群落,可能导致微生物多样性降低和养分循环改变。本期特刊旨在扩展土壤中微/纳米塑料的当前研究现状。一些潜在主题包括土壤中微/纳米塑料的命运、环境微/纳米塑料的风险评估以及微/纳米塑料对土壤生态系统的影响。欢迎撰写有关我们目前对土壤中微塑料的命运和环境影响的了解的研究、评论和意见文章。
但是,值得注意的是,生物降解的塑料的降解率取决于塑料的物理化学特征,以及生命结束时场景,并且快速分解只能在特定和有利条件下观察到。14,17 - 19最有利的治疗方法是堆肥,大量微生物以及适当的温度和湿度水平促进了可生物降解的塑料的降解。20然而,当前的工业堆肥处理周期通常比可生物降解的塑料的完整分解周期短。16,21这种不匹配会导致棘手的微塑料问题和实际垃圾填埋场处置。22同时,公众对“可生物降解”一词的误解导致很大一部分塑料废物直接被丢弃到环境中。许多研究表明,环境中可生物降解的塑料的降解速率非常缓慢。例如,在海水一年后几乎没有明显的分解,这突出了这些废物的环境积累的持续问题。23此外,对于脂肪族 - 芳族共聚物PBAT,大多数PBAT降解的微生物†电子补充信息(ESI)可用。参见doi:https://doi.org/ 10.1039/d3GC04500E
Wollongong大学10分析政府通过闭环设计来减轻微型和纳米塑料的权力,以告知全球塑料条约谈判