ADS-B 自动相关监视 – 广播式 AH 抽象层次结构 AOIS 航空运行信息系统 AR 增强现实 A-SMGCS 先进地面运动引导和控制系统 ATC 空中交通管制 ATCO 空中交通管制操作员 ATCR 空中交通管制雷达 ATM 空中交通管理 COO 协调员 CTOT 计算的起飞时间 CWP 管制员工作位置 DEL 交付 DTD 接地距离 EID 生态界面设计 EOBT 预计起飞时间 ER 探索性研究 ETOT 预计起飞时间 FDP 飞行数据处理 FOV 视场 GGV 注视、手势、语音 GND 地面 HDE 低头设备 HMD 头戴式显示器 ICAO 国际民用航空组织 IFR 仪表飞行规则 IHP 中间等待点 ILS 仪表着陆系统 IMC 仪表气象条件 JU 联合承诺 LOC 航向道 LVP 低能见度程序 OOT 离开塔台 PP 伪飞行员 PSR 主监视雷达雷达无线电探测和测距
ADS-B 广播式自动相关监视 AH 抽象层次 AOIS 航空运行信息系统 AR 增强现实 A-SMGCS 先进地面移动引导和控制系统 ATC 空中交通管制 ATCO 空中交通管制操作员 ATCR 空中交通管制雷达 ATM 空中交通管理 COO 协调员 CTOT 计算的起飞时间 CWP 管制员工作位置 DEL 交付 DTD 接地距离 EID 生态界面设计 EOBT 预计起飞时间 ER 探索性研究 ETOT 预计起飞时间 FDP 飞行数据处理 FOV 视场 GGV 注视、手势、语音 GND 地面 HDE 低头设备 HMD 头戴式显示器 ICAO 国际民用航空组织 IFR 仪表飞行规则 IHP 中间等待点 ILS 仪表着陆系统 IMC 仪表气象条件 JU 联合承诺 LOC 航向道 LVP 低能见度程序 OOT 离开塔台 PP 伪飞行员 PSR 主监视 RADAR 雷达无线电探测与测距
活动理论作为将 UAS 集成到 NAS 的框架:在无塔台机场附近进行 UAS 作业期间机组人员活动的实地研究 Igor Dolgov、Edin Sabic、Bryan L. White 新墨西哥州立大学心理学系 活动理论框架被用于研究将无人机系统 (UAS) 集成到国家空域系统的紧迫问题。如 FAA 的 UAS 运行批准政策通知中所述,UAS 飞行员和/或机组人员共同负责成功执行看见和避让任务。为了描述如何在实践中实现这一点,在长航时 UAS 飞行测试的三个阶段收集了视觉观察员和其他 UAS 机组人员的实地记录:起飞、飞行中和着陆。使用了四个独立的无线电通信频道,飞行员的工作量以三种方式减轻:起飞和着陆飞行动态由外部飞行员负责,观察和避让任务由视觉观察员负责,部分通信由任务指挥官负责。视觉观察员依靠视觉感知、通信和团队协调技能的结合,协助飞行员和任务指挥官在 UAS 操作期间有效完成观察和避让任务。简介
本指令执行空军 (AF) 政策指令 (AFPD) 13-2,空中交通管制,空域,机场和靶场管理,并与空军部手册 (DAFMAN) 13- 204v1-4,机场运营和 DAFI 13-213,机场驾驶相衔接。它制定了与空中交通管制 (ATC) 塔台服务、机场运营和相关设备以及本地飞行有关的程序和指南。本出版物适用于所有常规空军、空军预备队、空军国民警卫队、美国太空军、民航巡逻队在作为官方空军辅助部队执行任务时的所有文职雇员和制服成员、所有 DAF 文职雇员以及那些有合同义务遵守分配给第 80 飞行训练联队 (80 FTW) 和第 82 训练联队 (82 TRW) 的 DAF 发行条款的人。使用 AF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给主要责任办公室 (OPR);将 AF 表格 847 从现场传送到相应职能部门的指挥链。确保根据本出版物中规定的流程生成的所有记录均遵守 AFI 33-322《记录管理和信息治理计划》,并根据空军记录处置时间表进行处置,该时间表位于空军记录信息管理系统中。
课程编号 课程名称 AMNT 240 通用航空学与应用 是 是 AMNT 260 飞机电气系统理论 是 AMNT 265 AMNT 270 机身结构与应用 是 是 AMNT 271 机身系统与应用 是 是 AMNT 280 往复式发动机理论与应用 是 AMNT 281 涡轮发动机理论与应用 是 AMNT 416 航空维护管理:全球视角 是 是 ASCI 121 私人飞行员操作 是 ASCI 121L 飞行员知识测试准备 是 ASCI 202 航空科学概论 是 是 ASCI 254 航空立法 是 是 ASCI 260 无人驾驶飞行器与系统 ASCI 301 空中交通管制简介 ASCI 303 塔台与雷达空中交通管制与管理 是 ASCI 309 空气动力学 是 是 ASCI 316 运营业务无人驾驶航空系统方面 ASCI 317 旋翼机 是 ASCI 318 无人驾驶航空系统机器人技术 ASCI 322 飞机检查和定期维护计划 是 ASCI 327 全球环境下的航空劳动力管理 ASCI 357 飞行生理学 是 ASCI 378 直升机飞行环境 是 ASCI 388 直升机飞行计划 是 ASCI 401 机场发展与运营
PAE 位于华盛顿州斯诺霍米什县,位于穆基尔特奥和埃弗里特两座城市之间,距离西雅图市中心以北约 30 英里。斯诺霍米什县拥有并经营佩恩机场,这是一座独特的机场,占地约 1,250 英亩,拥有两条跑道,包括长 9,010 英尺的 16R-34L 跑道。波音公司在毗邻佩恩机场的 1,100 英亩土地上经营其宽体飞机装配厂,并租赁机场的大部分区域用于运营。佩恩机场拥有华盛顿州最新的商业机场航站楼,可停放 500 多架飞机,包括小型单引擎休闲飞机、公务机、老式战机和全新波音飞机。佩恩机场的私人商业航空航站楼为十几个西部目的地提供服务。该机场提供高品质的航空设施,包括 FAA 塔台、Cat 1 ILS、Part 139 认证、固定基地运营服务以及前往西雅图、贝尔维尤和雷德蒙德的便利交通。
CNS SG/11-WP/18 - 2 - 1.2 远程机场 ATS 是通过实时传输来自远程控制机场的固定和移动高清数字摄像机组合和集成的视图来实现的。远程数据流用于复制机场及其附近的视图,这相当于机场塔台视觉控制室的视图。固定摄像机覆盖机场的机动区域,并用作显示器的主要输入源。这些摄像机可能由其他视觉监视系统(如闭路电视)补充,用于看不见的区域。可移动摄像机具有平移倾斜变焦 (PTZ) 功能,可以根据需要将其定向以放大机场上的固定和移动物体。这种用法复制了传统塔台中空中交通管制员使用双筒望远镜的方式。可临时配置可移动摄像机以弥补固定摄像机的故障。因此,一系列环境传感器和麦克风可以捕捉声音、气象或其他运行数据,从而大大增强和补充空中交通管制员的视觉态势感知能力。 1.3 远程机场 ATS 的概念正在不断发展,目前欧洲航空安全局 (EASA) 定义了两种主要运行模式: • 单一运行模式是指由一个远程 ATS 工作,一次为一个机场提供 ATS 服务
正如《空中交通管理总体规划》(SESAR,2015 年)中所述,重大变化将影响未来欧洲空中交通的处理方式。而在 20 年内,空中交通量应该会翻一番,同时地面和空中的延误应该会减少 30%。总体安全性也应该得到改善。与使用标准航路不同,实施 4D 航迹将确保航班“尽可能长时间地沿着几乎不受限制的最佳航迹飞行 [...] 以非常准确地满足指定点的到达时间”(SKYbrary,2017a)。为了能够处理这些创新,空中交通管制员 (ATCO) 需要适当的工具,尤其是用于可视化 4D 航迹的工具。开发安全关键工作环境领域的软件非常具有挑战性,因为操作错误可能会导致致命事故。有必要尽可能密切地与用户组合作,了解他们的需求,并开发出有机会被这些专家用户接受的解决方案。在研究项目 VAST(虚拟空域和塔台)中,将探索可视化和声音化复杂空中交通场景的新概念。该团队遵循以用户为中心的设计流程(Nor-man,2013),并开发了三个低保真原型,以便尽早与 ATCO 一起对其进行评估
管制空域被划分为多个区域。航路区域是距离机场至少 50 公里的空域,相关空中交通管制员负责该区域。空中交通管制员必须接受飞机进入其区域;检查飞机,向飞行员发出指令、许可和建议,并将飞机移交给相邻区域或机场。当飞机离开分配给空中交通管制员的空域时,飞机的控制权将移交给控制下一个区域的空中交通管制员(或塔台空中交通管制员)。与许多现实世界的复杂系统一样,这种环境对操作员提出了多个并发要求,事实上,在航路空中交通管制环境中,空中交通管制员面临的系统包括来自不同方向、以不同速度和高度飞往不同目的地的大量飞机 [1]。空中交通管制员有两个主要目标。主要目标是确保管辖范围内的飞机遵守国际民用航空组织 (ICAO) 规定的分离标准。例如,最常见的间隔标准之一要求雷达控制下的飞机垂直间隔至少 1,000 英尺,水平间隔至少 5 海里。次要目标是确保飞机有序、迅速地到达目的地。这些目标要求空中交通管制员执行各种任务,包括监控空中交通、预测间隔损失(i
设施,包括塔台、终端雷达进近管制设施 (TRACON) 和空中交通管制中心 (ARTCC)。训练有素的空中交通管制员使用有效的自动化系统可以利用警报、警示和警告(统称为信号)来建立态势感知并减少认知工作量。我们编写了第一版手册,该手册将指导空中交通系统设计人员和管制员用户团队与人为因素专家合作创建或修改空中交通管制系统警报、警示和警告。该手册描述了一种新颖的信号框架,可用于评估现有的 ATC 信号或在设计过程中使用客观评分表和与主题专家(即空中交通管制员)的结构化访谈格式来设计新信号。该框架为相关人员提供了一种通用语言,使他们能够描述、分类和客观评估空中交通管制中的信号。信号框架及其相关的结构化访谈将在第 4 阶段与空中交通管制员一起进行测试和验证。该项目的第 5 阶段将包括根据需要进一步完善信号手册和开发培训材料。在该项目结束时,空中交通组织将拥有开发信号所需的工具,这将有助于使美国国家空域系统保持世界上最安全的地位。