目前,人们对锂金属电池重新产生兴趣,是因为它具有极高的能量密度,可以满足移动设备对长期自主性的巨大需求(Xiang 等,2019)。锂金属具有 3860 mA hg − 1 的高理论比容量和 -3.04 V(vs. SHE)的最低氧化还原电位,这促使它被用作阳极,取代目前商业化的石墨(理论比容量:374 mA hg − 1)。因此,对锂金属电池、Li-O 2 、Li-S/Se 的研究和开发正在兴起(Abouimrane 等,2012;Bruce、Freunberger、Hardwick 和 Tarascon,2012;Yang、Yin 和 Guo,2015;Yin、Xin、Guo 和 Wan,2013)。垂直锂枝晶的生长会刺穿隔膜,导致短路甚至起火,这是此类电池商业化应用的主要瓶颈(Lu et al., 2015 ; Tarascon & Armand, 2001 ; Wu et al., 2018 )。此外,枝晶的形成会产生“死锂”和特定的固体电解质界面相 (SEI)(Cheng, Yan, Zhang, Liu, & Zhang, 2018 ),这意味着库仑效率下降并影响循环效率。各种各样的策略(Xu et al., 2014 )与使用兼容
通过滴脂糖甘油混合物(高达50 wt%甘油)溶解在三氟乙酸和三氟乙酸酸酐(TFA:TFA:TFAA:TFAA,2:1,2:1,V:V:v)中,获得了自由膜。进行了膜的光学,结构,机械,热力学,屏障,迁移,防油性和生物降解特征的全面检查。所得的纤维素 - 甘油混合物分别表现出无定形分子结构和增强的H键网络,分别通过X射线衍射分析和红外光谱证明。包含甘油对膜的机械性能产生了塑性影响,同时保持其透明度。通过水吸收和水蒸气/氧气传输速率评估流体动力和屏障性能,并且获得的值与其他基于纤维素的材料的值一致。此外,总体迁移水平低于欧盟的调节限制,如使用Tenax®作为干粮模拟剂所述。此外,这些生物塑料表现出良好的防油性性能,尤其是在高甘油含量的情况下,以及作为烘焙产品包装材料的潜力。通过测量海水中的生物氧需求,观察到甘油诱导的高生物降解率,进行了生物降解性评估。
MARIA DANIELA STELESCU 1、ADRIANA STEFAN 2、MARIA SONMEZ 1、MIHAELA NITUICA 1*、MIHAI GEORGESCU 1 1 国家纺织和皮革研究与发展研究所,皮革和鞋类研究所分部,93 Ion Minulescu Str.,031215,布加勒斯特,罗马尼亚 2 国家航空航天研究所“Elie Carafoli”,220 Iuliu Maniu Blvd.,061126,布加勒斯特,罗马尼亚 摘要:本文介绍了基于乙烯-丙烯-三元共聚物橡胶和低密度聚乙烯的新型动态交联热塑性弹性体的开发,用增塑淀粉和具有化学改性表面的蒙脱石增强。在二水合氯化亚锡存在下,使用辛基苯酚甲醛树脂作为硫化剂。样品是在 Brabender Plasti-Corder 混合机上,在适当的温度和转速下,使用动态硫化方法和熔融插层技术获得的。使用特定模具和实验室规模的电动压机将获得的混合物制成具有标准尺寸的板材形式。从物理机械性能、熔体流动指数以及结构和形态的角度分析了获得的样品。观察到样品的特性受所用成分和获取方法的影响。根据所获得的特性,新的弹塑性材料可用于制鞋业(用于生产:鞋底、鞋跟、防护靴)、橡胶和塑料工业、汽车工业、农业或建筑业(制造垫圈、技术产品、软管等)。它们可以通过特定于塑料的方法轻松加工成不同的成品。
聚(乙烯基氯化物),由于在其上掺入增塑剂,PVC具有广泛的应用。增塑剂使PVC聚合物柔性,可延展且易于加工。本文介绍了增塑剂的一般概述,该概述涵盖了其定义,类型,样本和来源。基于石油的增塑剂在本质上是有毒的,可能对人类的健康有害。因此,由于塑料工业的毒性低,渗透性,增强的热和机械性能以及与PVC的高兼容性,因此已将生物塑性化剂引入了塑料工业。本文还列出了增塑剂的性能,其各种应用,以及将增塑剂应用于PVC的研究作品的简要摘要。关键词:增塑剂,邻苯二甲酸盐,渗滤液性聚合物,生物塑性剂的引入多年来,增塑剂在塑料工业中发挥了重要作用,因为它被用作聚合物(例如乙烯基氯化物)的添加剂。通常,未塑料的PVC具有有限的范围,例如管道,窗口轮廓和壁板。这是由于其坚硬而脆弱的性质是由Cl-Cl键的存在引起的。为了改善PVC的机械和热性能,将增塑剂引入聚合物中(Unar等,2010)。此外,增塑剂还为最终产物提供了足够的弹性,柔韧性和锻造性。增塑剂只是指在聚合物中添加到较低的玻璃温度和不折痕加工性,可加工性和延展性的低分子量化合物(Wei等,2019)。然而,由于环境和健康问题,塑料行业逐渐将其研究重点从传统的基于邻苯二甲酸酯的增塑剂转变为基于生物的增塑剂(Mekonnen等,2013)。此外,可以生产邻苯二甲酸酯的石油资源有限,导致许多研究用于使用生物质量。基于生物的增塑剂本质上是可再生的,并防止其浸出。此外,它的毒性和环境较小(Tong and Hai,2018; Lee等,2018)。一些研究人员已与PVC合成和应用生物塑性剂。,例如甘油酯,琥珀酸酯,等齿,脂肪酸,蓖麻油衍生物,植物油,乳酸和柠檬酸酯(Lavorgna等,
抽象增塑剂通常用于赋予某些聚合物材料有吸引力的机械性能。这么小的分子添加剂也被认为是从成品中浸出的,不仅会影响物质的物理特性,而且还会影响这些化学物质在大气和人体中的分布,从而带来长期的健康和环境风险。塑料,聚合物混合物和复合材料都被据说成功地克服了刚性和脆性。该分析的目的是总结有关增塑剂如何影响可生物降解明胶膜的功能性能的最新研究。增塑剂会破坏聚合物基质的连续性,从而导致物理变化。增塑剂的塑性效果改善了膜结构,从而增加了膜的拉伸强度和延伸的延伸,并降低了水障。我们根据其化学结构和本研究的目的来区分各种类型的增塑剂,并重点介绍了多功能增塑剂应用的最新发展。