背景。患有精神病(FEP)第一事件的患者在疾病发作时表现出临床,认知和结构性脑异常。心室增大。产科异常性与患精神病的风险增加有关,也与齿状障碍和大脑结构异常有关。分娩过程中的困难与较高的出生窒息风险有关,导致大脑结构异常,例如与认知障碍有关的心室肿瘤。方法。,我们使用磁共振成像检查了142名FEP患者和123名健康对照参与者之间心室大小的差异。产科并发症。我们研究了两组的产科困难对心室大小的影响以及脑室大小与认知障碍之间的可能关系。结果。与健康对照相比, FEP患者的第三心室大小明显更大。 第三脑室增大与诊断(患者的较高体积)有关,在分娩过程中遇到困难(在有困难的受试者中较高),并且在分娩过程中遇到困难的患者中最高。 言语记忆与第三脑室与脑比显着相结合。 结论。 因此,产科综合可能会通过大脑结构的变化来促进精神病的发展。FEP患者的第三心室大小明显更大。第三脑室增大与诊断(患者的较高体积)有关,在分娩过程中遇到困难(在有困难的受试者中较高),并且在分娩过程中遇到困难的患者中最高。言语记忆与第三脑室与脑比显着相结合。结论。因此,产科综合可能会通过大脑结构的变化来促进精神病的发展。我们的结果表明,在分娩过程中的困难可能是精神分裂症历史上描述的心室增大的重要贡献。
摘要:定量评价区域经济与生态环境系统的耦合协调度(CCD)对于实现可持续发展目标具有重要意义,可以识别经济或生态环境寒冷地区。目前,传统的评价框架主要包括基于统计数据的指标体系构建,很少利用地理时空数据集。因此,本研究旨在评估长江三角洲(YRD)的CCD变化趋势,并探讨县域尺度上CCD与经济和生态环境之间的关系。本研究选择长江三角洲作为研究区,评估其不同时期的CCD水平,并计算夜间差异指数(NTDI)和生态环境综合评价指数(ECEI)来表征区域经济发展与生态环境质量(EEQ)的差异。利用全局、局部和Geary's C空间自相关指标以及变化趋势法,计算并分析了两系统之间的CCD。主要研究结果表明:(1)2000—2020年,长三角地区经济系统呈现持续上升趋势(0.0487 a −1 ),NTDI平均值分别为0.2308、0.2964、0.3223、0.3971、0.4239,空间上呈现“东高西低”的分布特征。(2)长三角地区EEQ呈现逐步上升趋势(从2000年的0.3590上升到2020年的0.3970),变化趋势值为0.0020 a −1 。空间上,经济活动指数较高的区域主要位于西南部县域。 (3)近20年来,经济系统与生态环境系统之间的协调性呈增大的变化趋势,变化趋势值为0.0302 a −1 ,5个时期的平均协调性值分别为0.3992、0.4745、0.4633、0.5012、0.5369,协调性总体由“中度不协调”提高到“低度协调”。(4)NTDI和ECEI指数对区域协调性提高均有正向作用,但NTDI的贡献率略高于ECEI。
Abstract: The brain endothelial cell (BEC) glycocalyx (ecGCx) is a BEC surface coating consisting of a complex interwoven polysaccharide (sweet husk) mesh-like network of membrane-bound proteoglycans, glycoproteins, and glycosaminoglycans (GAGs) covering the apical luminal layer of the brain endothelial cells.ECGCX可以被认为是由(1)ECGCX组成的三方血液屏障(BBB)的第一个障碍; (2)BEC; (3)周细胞周围室,细胞外基质和血管周围星形胶质细胞。这种障碍的扰动允许在后毛细血管中增加通透性,这将允许对两种流体,溶质和促进性周围性白细胞衍生的白细胞(PVS)(PVS)的渗透性,从而导致增大的神经蛋白和神经蛋白效果。已知ECGCX具有多个功能,其中包括其物理和电荷屏障,机械转导,血管通透性的调节,调节性反应的调节以及抗凝功能。本综述详细讨论了每个列出的功能,并利用了多个传输电子显微照片和插图,以更好地了解ECGCX结构和功能作用,因为它与扩大血管周空间(EPVS)有关。这是对五重奏系列的第五次综述,该系列从脑屏障细胞的角度讨论了EPV的重要性。衰减和/或ECGCX的损失会导致脑屏障破坏,并增加对炎后脉冲脉静脉关腔周围空间中积累的浮游性白细胞,流体和溶质的渗透性。这种积累会导致阻塞,并导致EPVS,而废物清除了最近公认的淋巴系统。重要的是,EPV越来越被视为脑血管和神经退行性病理学的标志。
基于光的投影技术越来越多地用于制造仿生组织。[1–3] 最近,通过激光光束的断层投影,已经可以快速生物制造复杂的细胞结构。[4–6] 然而,在制造肌肉和肌腱等各向异性组织时,大多数光导组织制造策略在有效细胞排列方面的潜力有限[7,8],因为大多数方法都侧重于宏观特征(> 100 μ m),而这些特征缺乏这些组织中高度排列的细胞和细胞外组织所必需的地形线索。对于可以实现细胞级(< 30 μ m)分辨率的双光子聚合和超高分辨率数字光处理等技术,非相干光源将光聚合限制在小范围(< mm)内发生,而这需要逐层策略才能实现大型组织工程结构的制造。 [1,9,10] 速度和可扩展性的折衷限制了这些方法的转化潜力。指导性线索(如纤维成分以及纤维和挤压式生物打印的组合)已被广泛研究,因为它们具有促进细胞排列和排列组织工程结构成熟的潜力,如肌肉、肌腱、神经和软骨组织。[7,11–14] 研究表明,长宽比增大的拓扑线索会影响基底内/上细胞的生物活性。例如,通过微流体或软光刻制备的棒状微凝胶(长宽比为 10)能够增加细胞取向,与微球相比,高长宽比微棒之间的空隙可以更好地实现细胞取向。[15,16] 通过微图案化技术创建的具有超高长宽比(> 20:1)的拓扑特征可以有效诱导细胞粘附和排列。 [17,18] 尤其是当限制的尺寸接近细胞核的尺度(<10μm)时,这些纵向限制导致的核变形变得明显。细胞核的细长形状可以影响细胞分化、基因表达和再生,后者通过染色体重组和激活 DNA 修复机制来实现;[19,20]
脑脊液体积在 24 个月时恢复正常(12),这与横断面研究中老年人胼胝体体积减小的报告一致(13)。脑脊液体积的变化轨迹代表了另一种发育模式,即在被诊断为 ASD 的儿童中,从 6 个月大(14、15)到 4 岁(16)期间持续增加。综上所述,这些研究表明,ASD 儿童出生后早期大脑发育会发生一系列年龄特异性变化,同时行为也会发生动态变化。这表明,婴儿早期的症状前大脑变化可能代表一系列相互关联的大脑和行为变化,这些变化会导致自闭症整个综合症的出现,并在生命的 2 和 3 年内巩固为一种临床可诊断的疾病(17)。进一步描述大脑变化的性质和顺序将为阐明这种疾病的发病机制提供重要线索,并为制定针对这些发展轨迹的针对性干预措施提供信息。尽管长期以来,结构和功能神经影像学和尸检研究表明皮层下结构,特别是杏仁核,与 ASD 有关,但尚无研究检查过 ASD 婴儿期皮层下大脑发育的性质和时间。神经影像学研究表明 2 至 4 岁的 ASD 儿童杏仁核增大(18 – 22),尸检研究表明杏仁核神经元数量过多(23)和树突棘密度增加(24)可能是导致早期杏仁核过度生长的细胞过程。然而,绝大多数神经影像学研究都是横断面研究,并且是在确诊后的儿童(即 2 岁及以上)中进行的,因此无法了解杏仁核增大的发育时间过程、其与出现诊断特征和最终诊断的时间关系,以及增大是杏仁核特有的还是也发生在婴儿期的其他皮质下结构中,例如基底神经节。此外,对患有 ASD 的婴儿进行的神经影像学研究尚未检查 ASD 与其他神经发育障碍关系中脑部发现的特异性。在这项研究中,我们检查了选定的皮质下结构(杏仁核、尾状核、壳核、苍白球、丘脑)的纵向结构 MRI,以对比四组婴儿出生后早期脑发育情况:患有脆性 X 综合征(FXS)的婴儿;患自闭症可能性较高的婴儿(因为有一个患有自闭症的哥哥姐姐),后来患上了自闭症;患自闭症可能性较高的婴儿没有患上自闭症;对照组婴儿患自闭症的可能性较低,但发育正常。研究设计通过对比特发性自闭症(一种行为定义的发育障碍)与遗传定义的障碍 FXS 的大脑和行为发育,研究了疾病特异性问题。具有重叠的认知和行为特征(25)。此外,我们注意到,这项研究将家族性自闭症(自闭症的一个亚组,其病因通常归因于常见的多基因遗传[26])与 FXS(一种遗传性发育障碍和