NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
目的:这项研究的目的是调查马来西亚人中对Covid-19的知识,疫苗偏好和恐惧。材料和方法:这项在线问卷调查是从2021年9月6日至2021年11月12日通过成人马来西亚人的Google表格进行的。为了收集数据,将经过试验的经过验证的问卷调查给387个样本。由参与者的社会人口统计学特征,有关信息来源的COVID-19疫苗的知识,参与者的特定疫苗偏好,具有理由,疫苗接种状态和COVID-19的恐惧的调查表。结果和讨论:参与者对Covid-19疫苗有良好的了解。总共275(71%)参与者表现出对特定疫苗的偏爱;辉瑞-biontech是最优选的(61.5%)疫苗。偏爱的主要原因是有效性(56.4%)。疫苗优先组的参与者获得的知识评分(7.38/8)比非偏爱(7.28/8)的知识评分更高。总共376名(97%)的受访者接种疫苗,其中250名(66.5%)接受了首选疫苗,而22(5.85%)未获得挑选,而休息却没有偏爱。在11名未接种疫苗的参与者中,有3名拒绝接种疫苗,以提供非脱颖而出的疫苗。与非接种疫苗的组相比,疫苗接种组中对共vid-19分数的恐惧更高(21.34/35)(19.09/35),尽管没有观察到显着差异。结论:大多数马来西亚人都对COVID-19疫苗接种知识渊博,接受了疫苗优先和疫苗接种。疫苗偏爱的参与者比没有明显差异的非偏爱更具知识渊博。在非接种疫苗的参与者中,有27%(3/11)拒绝提供的疫苗接种,如提供的非偏爱疫苗。疫苗接种组对19009的恐惧比非接种疫苗的恐惧更多,而差异无关。提高意识是人们不愿意或犹豫接种疫苗所必需的。
通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)
OpenAI 于 2022 年 11 月启动的 ChatGPT 引发了关于人工智能对高等教育影响的重要讨论。当学生使用它来撰写论文时,它打破了现状。与谷歌的 Gemini 和微软的 Copilot 一样,OpenAI 的 ChatGPT 是能够模仿人类对话的强大大型语言模型 (LLM) 的典型示例。大型语言模型在识别语言模式和预测上下文单词方面表现出色,并且擅长以最少的用户输入生成连贯且相关的文本响应。通过利用其广泛的训练语言模式数据库,大型语言模型可以提供准确反映用户输入上下文的生成文本响应。凭借对语言的掌握,他们可以创作创意诗歌,撰写全面连贯的文章,深入分析主题,并有说服力地提出论点。
两种 OGG1 调节剂均减少了 KBrO 3 诱导的 AP 位点(图 2G),我们发现 TH5487 的 DNA 链断裂(γH2AX)更少(图 2H),表明 OGG1 糖基化酶活性受损会导致 AP 位点数量减少。相反,我们发现 TH10785 的 DNA 链断裂(γH2AX)更多(图 2H),证实 TH10785 在细胞中的催化活性会导致 DNA 链断裂。总之,这些结果表明 TH10785 激活的 OGG1 具有新的细胞作用,即比 8-oxoG 更倾向于 AP 位点。接下来,我们测试了 TH10785 在细胞中诱导 β,δ 消除的程度。我们假设同时刺激 β,δ-消除和阻断 PNKP1 活性应会使系统因未修复的 DNA 单链断裂而超载(图 1A)。因此,在单独暴露于 OGG1 抑制剂或激活剂(图 3A、图 S26)和类似化合物(表 S6 和图 3B)或与 PNKP1i 联合使用的 U2OS 细胞中,使用标记物 γH2AX 和 53BP1 通过 IF 测量 DDR。我们发现 PNKP1 抑制剂只有与引起体外 β,δ-裂解酶活性的 OGG1 激活剂联合使用时才会诱导强 DDR。为了评估这种因果关系,我们使用 RNA 测序监测转录变化,发现 PNKP1i 与 TH10785 联合使用(而非单独使用)会诱导识别和修复 DNA 双链断裂的关键参与者的转录显着上调(图 3C)。此外,TH10785 与 PNKP1 抑制相结合时细胞活力降低,但 TH5487 则不会降低(图 3D 和 3E)。这些结果表明,TH10785 激活 OGG1 β,δ-裂解酶活性在体外和细胞内均会发生,并且 PNKP1 对于避免 DNA 损伤的积累和随之而来的细胞死亡至关重要。总之,我们提出了一种新概念,即通过酶导向的小分子催化剂诱导 OGG1 β,δ-裂解酶活性,结合到酶的活性位点(图 3F、S27 和 S28)。TH10785 的存在引起的新催化功能更倾向于 AP 位点而不是 8-oxoG,并在体外和细胞内产生 PNKP1 依赖性。改善或重新规划处理氧化性DNA损伤的修复途径对许多疾病(如炎症、癌症、阿尔茨海默氏症或衰老)具有重要意义,这里概述的概念允许以新的方式控制和重新规划修复途径(24)。
除了推动 IP(知识产权领域)的技术进步之外,由于图灵测试,我们还见证了 21 世纪人工智能应用的范式转变。人工智能领域的快速发展得益于算法的改进、网络计算能力的提高以及捕获和存储空前大量数据的能力的提高。我们潜意识中不知不觉地将人工智能融入了我们的现实世界体验和应用中,这使得人工智能成为我们日常生活的一部分。人工智能的主要特征是,一旦它开始发挥作用,就不再被称为人工智能,而是成为一种常见的计算形式。例子包括电话另一端的自动语音或根据您的偏好和先前搜索推荐餐厅或电影。这些例子集中在我们日常生活的既定方面,经常忽略语音识别、自然语言处理和自然语言理解等人工智能技术。
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
