从医学图像中准确分割脑肿瘤对于诊断和治疗计划非常重要,而且通常需要多模态或对比度增强图像。然而在实践中,患者的某些模态可能缺失。合成缺失的模态有可能填补这一空白并实现高分割性能。现有方法通常分别处理合成和分割任务,或者将它们联合考虑,但没有对复杂的联合模型进行有效的正则化,导致性能有限。我们提出了一种新颖的脑肿瘤图像合成与分割网络 (TISS-Net),该网络可以高性能地端到端获得合成的目标模态和脑肿瘤分割。首先,我们提出了一个双任务正则化生成器,可以同时获得合成的目标模态和粗分割,它利用肿瘤感知合成损失和可感知正则化来最小化合成和真实目标模态之间的高级语义域差距。基于合成图像和粗分割,我们进一步提出了一个双任务分割器,它可以同时预测细化分割和粗分割中的误差,其中引入这两个预测之间的一致性以进行正则化。我们的 TISS-Net 通过两个应用进行了验证:合成 FLAIR 图像用于整个神经胶质瘤分割,合成增强 T1 图像用于前庭神经鞘瘤分割。实验结果表明,与现有模态的直接分割相比,我们的 TISS-Net 大大提高了分割精度,并且优于最先进的基于图像合成的分割方法。2023 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
由于低领域的MRI技术已被传播到世界各地的临床环境中,因此评估正确诊断和治疗给定疾病并评估机器学习算法的作用所需的图像质量,例如深度学习,在增强较低质量图像的增强中。在对正在进行的随机临床试验的事后分析中,我们评估了降低质量和深度学习增强图像的诊断效用,用于脑积水治疗计划。ct的感染后婴儿脑积水的图像因大脑和CSF之间的空间分辨率,噪声和对比度而降解,并使用深度学习算法增强了。将降解和增强的图像均呈现给三个经验丰富的儿科神经外科医生,这些神经外科医生习惯于在低至中收入国家(LMIC)工作,以评估用于脑力头脑的治疗计划中的临床实用性。此外,为了评估评估者的深度学习增强常规造成的重建误差是否可以接受。结果表明,大脑和CSF之间的图像分辨率和对比度与噪声比率预测图像的可能性被认为是对脑积水治疗计划有用的可能性。深度学习增强大大提高了对比度与噪声比率,从而提高了图像有用的明显可能性;但是,深度学习增强引入了结构性错误,从而造成了误导临床解释的重大风险。这些发现提倡新标准,以评估可接受的图像质量以供临床使用。我们发现,质量低于通常可以接受的图像对于脑积水治疗计划可能是有用的。此外,低质量的图像可能比通过深度学习增强的图像更可取,因为它们没有引入误导信息的风险,而这些信息可能会误导治疗决策。
深度学习模型在从培训数据中学习复杂的模式和概念方面表现出了显着的功能。但是,最近的发现表明,这些模型倾向于在很大程度上依赖于图像背面中存在的简单易懂的特征,而不是它们旨在进行分类的主要概念或对象。这种现象对图像分类器构成了挑战,因为图像中关键的要素可能被掩盖。在本文中,我们提出了一种新的方法来解决这个问题,并通过图像分类器来改善主要概念的学习。我们的中心思想围绕着同时指导模型在分类任务期间对前景的关注。通过强调封装主要感兴趣的主要观察的前景,我们旨在将模型的焦点转移到背景的主要影响下。为实现这一目标,我们引入了一种机制,该机制鼓励该模型分配足够的关注对前景。我们研究了各种策略,包括修改损失函数或合并其他架构组件,以使分类器能够有效地捕获图像中的主要概念。从事方面,我们探讨了不同前景注意机制对模型性能的影响,并提供了对其有效性的见解。通过基准数据集的广泛实验,我们证明了我们提出的方法在提高图像分类器的分类准确性方面的功效。我们的发现突出了前景注意力在增强图像中主要概念的模型理解和表示时的重要性。这项研究的结果有助于推进图像分类领域,并提供有价值的见解,以开发更健壮和准确的深度学习模型。关键字:深度学习;图像分类;前景的关注;概念学习;模型增强。
由于低领域的MRI技术已被传播到临床环境中,因此重要的是要评估正确诊断和治疗给定疾病所需的图像质量。在对正在进行的随机临床试验的事后分析中,我们评估了降低质量和深度学习增强图像的诊断效用,用于脑积水治疗计划。图像因分辨率,噪声和大脑和CSF之间的对比而降低,并使用深度学习算法增强。将降解和增强的图像均呈现给三个经验丰富的儿科神经外科医生,习惯于在LMIC中工作,以评估脑积水治疗计划中的临床实用性。结果表明,大脑和CSF之间的图像分辨率和对比度与噪声比率预测了有用的脑积水治疗计划的可能性。对于具有128x128分辨率的图像,对比度为2.5的比率具有很高的有用可能性(91%,95%CI 73%至96%; P = 2E-16)。深度学习增强了128x128的图像,其对比度非常低(1.5)和有用的概率较低(23%,95%,95%CI 14%至36%; P = 2E-16)增加了有用的明显可能性的可能性,但会带来明显的有用的可能性,但带来了误导性的误解=误导的误解=误导=误导的误解(cn)的实质性风险(cn)的误解(cn)的误解(cn)的实质性=(cn)的误解(cn)的误解=误导(cn)的误解(cn)的误解(cn)=误导后的误解(cn)。 21%,95%CI 3%至32%;较低的质量图像通常被认为是临床医生可以接受的,这对于计划脑积水治疗可能很有用。使用低质量图像的深度学习增强时,我们发现了误导结构错误的重大风险。这些发现提倡新标准,以评估可接受的图像质量以供临床使用。
摘要。目的:本研究旨在使用 YOLOv8 架构和数据增强技术来检测脑膜瘤、神经胶质瘤和垂体脑瘤。方法:本研究采用 YOLOv8 架构和数据增强技术来检测脑膜瘤、神经胶质瘤和垂体脑瘤。该研究收集了一组 T1 加权对比增强图像。该数据集用于训练、验证和测试。应用预处理和增强来增强训练数据。结果:应用数据增强技术后,所有肿瘤类型的表现都显着改善。与增强前的结果相比,脑膜瘤、神经胶质瘤和垂体瘤的准确率、召回率和 mAP50 得分都有所提高。研究结果强调了该方法在增强模型在 MRI 扫描中准确检测脑肿瘤的能力方面的有效性。有增强和无增强的研究都遵循类似的程序:首先进行数据收集,然后进行预处理,然后进行或不进行增强。随后,将收集到的数据分成训练和验证子集,用YOLOv8架构进行训练。最后,通过测试评估模型的性能,以评估其在检测脑肿瘤方面的有效性。 新颖性:这项研究的新颖性在于YOLOv8架构和用于MRI脑肿瘤检测的数据增强技术。该研究通过展示基于深度学习的方法在自动化检测过程和提高模型性能方面的有效性,为现有知识做出了贡献。通过将YOLOv8与数据增强相结合,提出的方法提高了模型的准确性和效率。研究结果强调了这种方法在促进早期诊断和治疗计划方面的潜力,从而在脑肿瘤检测的背景下改善患者护理。 关键词:深度学习、物体检测、脑肿瘤、YOLOv8、数据增强 收到日期:2023年7月/修订日期:2023年7月/接受日期:2023年8月 本作品根据知识共享署名4.0国际许可协议进行许可。
摘要:道路网络提取是遥感(RS)中的重要挑战。解释RS图像的自动化技术提供了一种具有成本效益的解决方案,可快速获取道路网络数据,超过传统的视觉解释方法。然而,道路网络的各种特征,例如不同地区的各个长度,宽度,材料和几何形状,构成了RS图像中的道路提取的巨大障碍。可以将道路提取问题定义为涉及捕获上下文和复杂元素的任务,同时还保留边界信息并为RS数据生成高分辨率的道路细分图。提议的Archimedes调整过程的目标量子量子扩张了道路提取的卷积神经网络(ATP QDCNNRE)技术是通过增强图像细分结果的效率来解决上述问题,从而利用遥感成像,与Archimedes Optimization Optimation Algorith Modecs(AOA)相关联(AOA)。这项研究的发现证明了与遥感图像一起使用时,ATP-QDCNNRE方法实现的道路萃取能力增强。ATP-QDCNNRE方法采用DL和超参数调整过程来生成高分辨率的道路分割图。这种方法的基础在于QDCNN模型,该模型结合了量子计算(QC)概念和扩张的卷积,以增强网络捕获本地和全局上下文信息的能力。扩张的卷积还可以增强接收场,同时保持空间分辨率,从而提取精细的道路特征。基于ATP的高参数修改改善了QDCNNRE道路提取。评估ATP QDCNNRE系统的有效性,使用基准数据库来评估其仿真结果。实验结果表明,ATP-qdcnnre以75.28%的相交(IOU)的相交(MIOU)的平均相交(MIOU)为95.19%,F1的平均相交,90.85%的F1,精度为87.54%,召回了Massachusetts Road DataSet的94.41%。与最新方法相比,这些发现证明了该技术的效率。
三叉状星云,在Unistellar的生动愿景之前和之后,2024年9月5日,英国伦敦和美国洛杉矶 - Unistellar,是开发世界上最强大和用户最友好型智能望远镜的先驱,在IFA 2024:生动的视觉信号处理上发布了其最新的创新。这种开创性的图像处理技术有望通过以前的清晰度揭示宇宙的鲜艳色彩和复杂的细节来提升观星的本质。在迅速发展的天体观察领域中,Unistellar的生动视野是创新的灯塔。图像质量的飞跃实际上是从这个世界上出现的。可用于2024年10月的空中更新,所有Unistellar望远镜用户都可以访问生动的视觉。生动的视力一方面提供了两种治疗方法。首先,它允许望远镜更好地检测并揭示空间的令人叹为观止的色调。其次,它会自动执行复杂的图像改进操作。在短短2分钟内,Unistellar自动揭示了Hercules群集中300,000星的细微颜色,以及Trifid Nebula气体云的充满活力的化学成分。发现Cosmos Vivid Vision的开创性技术的真实颜色允许Unistellar望远镜检测信号中真实的空间颜色,并向用户揭示其闪闪发光的品种,这是以前隐藏在视图中的令人眼花spectrum乱的频谱。生动的视觉不仅仅是增强图像;它改变了我们体验宇宙的方式,在天体观察中提供了无与伦比的活力,超过了市场上任何可用的东西。专业图像增强其在车载算法会自动纠正瑕疵并增强每个图像,并放大美学,以使每个观察时刻都在令人惊叹的清晰度中永生,仿佛是一位经验丰富的天体摄影师。生动的视力技术如何工作?生动的视野通过分析和重新处理成千上万的图像,由Unistellar的全球25,000多名用户贡献。这个广泛的数据
摘要:在信息和通信技术的时代,确保形象安全已成为面对网络威胁,未经授权的访问和篡改的优先事项和关注。传统技术提供了一定程度的安全性,但实际上缺乏处理图像异常的能力,因此提出机器学习技术并改善支持向量机(SVM)分类器的挑战。本研究通过使用加密和特征提取系统来提高分类器,以增强图像中的数据安全性,该系统依赖于较高的混沌权重来图像的特定部分。所提出的方法将图像的尺寸降低到截面,从那里从图像的实际维度降低。在混淆和扩散的两个主要阶段创造复杂的随机性方面,改进的分类器的准确性更高。实验结果证明了分类器在熵= 8方面的有效性,并且是有效的值,直方图均匀性,异常检测和加密复杂性。这些结果在许多领域提供了可靠且可扩展的解决方案,例如医疗保健,经济学和社交媒体信息传播。可以通过将所提出的方法与保护图像数据的其他方法相结合来提供全面的方法。关键字:支持向量机,图像,加密1。引言在我们当前的时间以及互联网和通信技术的发展中,图像是互联网上最重要的交流形式之一。因此,传统加密算法的挑战和建议出现了。图像用于许多设施,例如安全性,社交通信,医疗领域和通信。因此,由于其广泛的蔓延,对未经授权的人使用数据的使用引起了安全问题。图像通常包含敏感数据,并且必须保留,尤其是在当前广泛的网络攻击中[1]。尽管具有有效性,但网络攻击的加速已成为每个人的痴迷,并且需要挑战,以找到与快速技术发展保持同步的新的和先进的方法。近年来,随着技术和通信的发展以及社交网站和云存储的传播,在网络攻击和数据安全的框架内,暴露于攻击已成为所有军事,财务,经济和其他专业的优先事项[2]。图像是攻击最脆弱的数据,因为它们具有高容量,强大的互连和像素之间的重复。全世界当前正在寻求的目标是数据安全性,最有效的方法之一是加密,这只能使数据不可读取,只能由能够检索它的授权人员。由于先前的研究中提到了许多加密方法,因此加密成为挑战的主题。
3用户指南5 3.1快速启动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.1.1加载图像和访问帧。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.1.2构建总像素矩阵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.1.3使用卷。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 3.1.4创建分割(请参阅)图像。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 3.1.5解析分割(请参阅)图像。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.1.6创建结构化报告(SR)文档。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.1.7解析结构化报告(SR)文档。。。。。。。。。。。。。。。。。。。。。。。。。。。12 3.1.8创建显微镜批量简单注释(ANN)对象。。。。。。。。。。。。。。。。。16 3.1.9解析显微镜批量简单注释(ANN)对象。。。。。。。。。。。。。。。。。18 3.1.10创建次要捕获(SC)图像。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3.1.11创建灰度软拷贝表现状态(GSP)对象。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 3.2一般概念。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 3.2.1图像。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 3.2.2像素变换。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。27 3.2.3卷。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 3.2.4编码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 3.3信息对象定义(IOD)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 3.3.1分割(SEG)图像。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 3.3.2结构化报告文档(SRS)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70 3.3.3关键对象选择(KOS)文档。。。。。。。。。。。。。。。。。。。。。。。。。。。。94 3.3.4显微镜批量简单注释(ANN)对象。。。。。。。。。。。。。。。。。。。。。94 3.3.5次驱动图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 3.3.6介绍状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 3.3.7次级捕获(SC)图像。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 3.3.8传统转换后的增强图像。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100
摘要:在计算机视觉的领域,使用OpenCV的年龄和性别检测是一种关键应用,展示了复杂算法和真实世界应用的融合。该项目努力开发一个能够准确估算图像或视频流的年龄和性别的强大系统。利用OpenCV的力量,一个流行的开放式计算机视觉库,再加上机器学习技术,该系统旨在自动将个人分类为预定义的年龄组和性别类别。通过面部特征分析,深度学习模型和图像处理技术的结合,系统可以以惊人的精度辨别年龄和性别属性。通过将该技术集成到各种领域,例如监视,营销和用户体验自定义,该项目努力为各种社会和商业挑战提供实用的解决方案。年龄和性别的抽象性质使这项努力多基础,需要一种细微的方法,包括数据预处理,模型培训和绩效优化。最终,该项目有助于进步计算机视觉应用程序,从而促进了许多领域的创新和效率。关键字:CNN,深度学习,性别分类,年龄检测。I.在当今相互联系的世界中引言,在那里,数字互动和社交媒体渗透到日常生活中,了解人口统计学(例如性别和年龄)变得越来越重要。II。II。智能设备的扩散促进了大量数据的收集,其中大部分包含对人类行为和互动的宝贵见解。在利用这些数据,性别和年龄预测算法的无数应用程序中,它们在增强用户体验,个性化内容并告知决策的潜力中脱颖而出 - 在各个领域制定过程。由于其丰富的信息内容,面部照片已成为性别检测和年龄预测算法的主要来源。利用图像处理,特征提取和分类技术方面的进步,研究人员和开发人员设计了复杂的方法来分析面部特征并准确推断人口统计学属性。这些方法通常涉及阶段,例如增强图像,以提高质量和分割以隔离相关特征,从而为后续分析奠定了基础。通过训练大型数据集的神经网络,我们旨在开发能够准确地将性别预测为“男性”或“女性”的强大模型,并可能基于实验参数对年龄组进行分类。除了技术复杂性之外,人类面部图像对各个行业和社会领域都具有深远的影响。从安全和娱乐到招聘和身份验证,从面部图像中检测性别和年龄的能力可以简化流程,增强安全措施并为战略决策提供了信息。相关作品本文使用应用于面部图像的深度学习技术介绍了有关性别识别的研究。此外,面部表情,人类交流的重要方面,提供了对情感状态和反应的见解,使面部图像分析成为心理学家和研究人员的宝贵工具。通过阐明这些技术的方法,挑战和潜在应用,我们旨在为计算机视觉中的知识不断增长,并促进具有真实世界影响的实用解决方案的发展。作者探索了卷积神经网络(CNN)的使用进行特征提取和分类,从而实现了有希望的