补充图3。Correlation of ctDNA VAF baseline values with A. tumor load (RECIST 1.1) in the group of IHCC patients ( P= 0.5013, r=0.1956, Spearman), B. tumor load (RECIST 1.1) in the group of EHCC patients ( P= 0.0962, r=0.5370 Spearman), C. progression- free survival (PFS) in the group of EHCC patients ( P= 0.2380,r = -0.2974,Spearman)。D. PFS患者的突变数量的相关性(P = 0.0907,R = -0.3988,Spearman)。E. kaplan-Meier在BAP1,PBRM1,KRAS或TP53患者中与没有突变的患者中突变患者的PFS图(P = 0.1200,Mantel-Cox)。IHCC-肝内胆管癌,EHCC-肝外胆管癌。IHCC-肝内胆管癌,EHCC-肝外胆管癌。
DNA甲基化是调节细胞重编程和发育的必要表观遗传机制。使用全基因组纤维纤维测序的研究表明,人类和小鼠细胞和组织中的脱离DNA甲基甲基景观。然而,导致细胞类型之间巨核尺度甲基组模式差异的因素仍然鲜为人知。通过分析公共可用的258个人和301个小鼠全基因组纤维纤维测序数据集,我们透露,富含鸟嘌呤和胞嘧啶的基因组区域(位于核中心附近)在胚胎和生殖线重编程过程中都非常容易受到全球DNA脱甲基化和甲基化事件的极大影响。更重要的是,我们发现在整体DNA甲基化过程中产生部分甲基化结构域的区域更有可能恢复全球DNA脱甲基化,含有高水平的腺嘌呤和胸腺素,并且与核层层相邻。受其鸟嘌呤感染的基因组区域的空间特性可能会影响参与DNA(DE)甲基化的分子的可及性。这些特性塑造了巨型尺度的DNA甲基化模式并随着细胞的分化而变化,从而导致细胞类型中不同的巨型尺度甲基甲基组模式的出现。
*通讯作者。ikaplow@cs.cmu.edu(i.m.k.); apfenning@cmu.edu(a.r.p.)。†这些作者为这项工作做出了同样的贡献。•目前的地址:美国马萨诸塞州剑桥市史丹利精神病学研究中心。§§地址:美国华盛顿州西雅图的艾伦脑科学研究所。¶刊登地址:美国马萨诸塞州剑桥大学的癌症计划。#Present地址:美国爱荷华州爱荷华州法学院,美国爱荷华州,美国。**动物联盟合作者和分支机构在本文的结尾列出。作者贡献:I.M.K.,A.J.L。和D.E.S.以姓氏为单位的顺序被列为联合第一作者,因为它们对手稿也同样贡献。概念化:I.M.K。和A.R.P.数据策划:I.M.K.,C.S.,B.N.P.,A.J.L.,W.K.M.,K.F。和D.P.G.正式分析:I.M.K.,D.E.S.,A.J.L.,C.S.,H.H.S.和B.N.P. 资金收购:A.R.P.,A.J.L.,B.N.P.,E.K.K.,D.P.G。和K.L.-T。调查:I.M.K.,A.J.L.,D.E.S.,C.S.,M.E.W.,H.H.S.,B.N.P.,K.P.,A.R.B。和A.R.P. 方法论开发:I.M.K.,A.J.L.,D.E.S.,C.S。和A.R.P. 监督:I.M.K.,A.R.P.,A.J.L.,M.E.W.,E.K.K。和K.L.-T。软件实施:D.E.S.,I.M.K.,A.J.L.,C.S.,H.H.S.,M.E.W.,W.K.M.,X.Z.和K.F. 可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P. 手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S. 手稿评论和编辑:所有作者。正式分析:I.M.K.,D.E.S.,A.J.L.,C.S.,H.H.S.和B.N.P.资金收购:A.R.P.,A.J.L.,B.N.P.,E.K.K.,D.P.G。和K.L.-T。调查:I.M.K.,A.J.L.,D.E.S.,C.S.,M.E.W.,H.H.S.,B.N.P.,K.P.,A.R.B。和A.R.P.方法论开发:I.M.K.,A.J.L.,D.E.S.,C.S。和A.R.P.监督:I.M.K.,A.R.P.,A.J.L.,M.E.W.,E.K.K。和K.L.-T。软件实施:D.E.S.,I.M.K.,A.J.L.,C.S.,H.H.S.,M.E.W.,W.K.M.,X.Z.和K.F.可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P. 手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S. 手稿评论和编辑:所有作者。可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P.手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S.手稿评论和编辑:所有作者。
增强子产生双向非编码增强子RNA(ERNAS),可能调节基因表达。目前,ERNA函数仍然神秘。在这里,我们报告了一个5'上限的反义ERNA珍珠(与R-Loop组相关的PCDH ERNA),该珍珠从原始粘蛋白(PCDH)αHS5-1增强子区域转录。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA和CRISPRA以及锁定的核酸策略以及CHIRP,MEDIP,DRIP,QHR-4C和HICHIP实验,我们建立了PCDH lo loble(pcdh loble),通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。 尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。 这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。
研究成果概要(中文):CRISPR-Cas9 是一种多功能技术,可应用于医疗。在 DNA 双链断裂后的修复途径中,与模板 DNA 同源重组 (HDR) 的修复有助于精确编辑,但同时,涉及碱基缺失或插入的 NHEJ 也以高频率发生。我使用 Traffic Light Reporter 系统进行了基于细胞的 HDR 增强因子筛选,该系统可以同时检测具有 HDR 和 NHEJ 的细胞,并确定了与 NHEJ 衍生细胞相比,HDR 衍生细胞中表达较高的几个基因。对这些基因的进一步基因本体分析表明,它们与 DNA 修复和细胞周期有关。
1美国旧金山旧金山分校的物理治疗与康复科学系; 2美国旧金山旧金山分校的大脑和脊柱损伤中心; 3美国旧金山旧金山大学病理学系; 4美国旧金山旧金山分校的生物化学与生物物理学; 5 Fundacio´ n Ciencia&Vida,智利圣地亚哥; 6加利福尼亚大学旧金山旧金山,美国霍华德·休斯医学院; 7美国旧金山旧金山大学神经外科系; 8加利福尼亚大学旧金山旧金山旧金山大学神经科学研究所; 9加利福尼亚大学旧金山旧金山,美国的卡夫利基本神经科学学院1美国旧金山旧金山分校的物理治疗与康复科学系; 2美国旧金山旧金山分校的大脑和脊柱损伤中心; 3美国旧金山旧金山大学病理学系; 4美国旧金山旧金山分校的生物化学与生物物理学; 5 Fundacio´ n Ciencia&Vida,智利圣地亚哥; 6加利福尼亚大学旧金山旧金山,美国霍华德·休斯医学院; 7美国旧金山旧金山大学神经外科系; 8加利福尼亚大学旧金山旧金山旧金山大学神经科学研究所; 9加利福尼亚大学旧金山旧金山,美国的卡夫利基本神经科学学院
增强子是决定细胞身份和肿瘤进展的必需顺式调控元件。增强子功能依赖于增强子与其局部染色质环境中靶启动子之间的物理相互作用。增强子重编程是癌症发病机制中的重要机制,可由顺式和反式因子驱动。超级增强子在许多癌症类型的致癌基因中获得,是癌症治疗的潜在靶点。BET 和 CDK 抑制剂通过增强子功能机制起作用,并在治疗各种类型的癌症中显示出良好的效果。基因组编辑是癌症治疗中重新编程增强子的另一种方法。过去几年,几位作者对增强子与癌症之间的关系进行了修订,主要关注增强子影响癌症的机制。在这里,我们强调 SE 在癌症发病机制中的作用以及涉及表观遗传调节剂(BETi 和 CDKi)的新疗法。我们认为了解活性机制将有助于这些抗癌药物的临床成功。
Hanadi Chammout 1、Delia L. Adkins 2、Aleece K. Al-Olimat 2、Zeinab Alsaad 1、Beatrice M. Altopp 3、Tuqa Amer 3、Feyi O. Apampa 3、Gwendolyn R. Avery 2、Isaac I. Bazzi 1、Emilia D. Beck 2、Elise L. Beier 3、B. Shafer Belisle 3、Lane Benton 2、Madison M. Bolyard 2、Olivia E. Brain 2、Eldon T. Buckner 2、Shria Roy Chowdhury 1、Jennifer R. Cifranic 2、Liam Cleary 3、Tyler R. Clum 2、Autumn M. Cruz 2、Meghan V. DeGray 3、Isabel L. Echeverry 3、 Haya El dana 1 、 Sarah K. Elkadri 1 、 Paige L. Estep 2 、 Luke R. Falke 2 、 Hannah J. Foor 2 、 Anika S. Gullapalli 1 、 Sandro S. Hakim 1 、 Hussein B. Hazime 1 、 Lauren E. Heininger 2 、 Emma G. Hoeft 2 、 Lauren M. James 2 , Yeowon Jeon 1 , Megan R. Johnson 2 , Laine P. Jordan 2 , Zayd Khan 1 , Sydney K. Kochensparger 3 , Fadi J. Koria 1 , Ruby M. Krasnow 3 , Veronica Lilly 2 , Eileen Lim 3 , Ian T. MacCormack 3 , Andriy Malesh 3 , Mikayla G. Mariano 2、奥黛丽·C·门策2、Katelyn H. Messner 2、Katlyn C. Myers 2、Emily R. Newman 3、Annie M. Richters 2、Liliana Romero 1、Adam Rotem 3、Reese J. Saho 2、Kaname Sawaki 2、Ashley N. Selders 2、Elizabeth Shockney 2、Farah A. Sobh 1、Isabelle F. Speiser 3、Breanna M. Sproul 2、Veronica J. Sroufe 2、Antonia Tollkuci 3、Cassandra C. Trevino 3、Megan A. Vapenik 2、Erin M. Wagner 2、Kayla L Bieser 4、Jamie L. Siders 2、Justin R. Thackeray 3、Jacob D. Kagey 1§
摘要人类进化出一种与发育和基因调节修饰有关的膨胀且复杂的大脑皮层。1-3。人类加速区域(HAR)是具有人类特异性核苷酸取代的高度保守基因组序列。尽管有成千上万的带注释的竖琴,但它们对人类特异性皮质发育的功能贡献在很大程度上是未知的4,5。hare5是在大脑发育过程中活跃的Wnt信号受体Frizzled8(FZD8)的HAR转录增强子6。在这里,使用基因组编辑的小鼠和灵长类动物模型,我们证明了人(HS)Hare5微型皮质发育和连通性通过控制神经祖细胞(NPC)的增殖和神经源能力。HS-HARE5敲入小鼠的新皮质含量显着增大,其中包含更多的神经元。 通过测量体内神经动力学,我们显示了这些解剖学特征与皮质区域之间功能独立性的增加相关。 要了解潜在的发展机制,我们使用实时成像,谱系分析和单细胞RNA测序评估祖细胞命运。 这揭示了HS-HARE5修饰了径向神经胶质祖细胞的行为,在早期发育阶段增加了自我更新,随后神经源性扩大。 我们使用基因组编辑的人和黑猩猩(PT)NPC和皮质器官来评估HS-HARE5和PT-HARE5的相对增强剂活性和功能。 使用这些正交策略,我们显示了HARE5驱动器中的四个人类特异性变体增加了增强剂活性,从而促进了祖细胞增殖。HS-HARE5敲入小鼠的新皮质含量显着增大,其中包含更多的神经元。通过测量体内神经动力学,我们显示了这些解剖学特征与皮质区域之间功能独立性的增加相关。要了解潜在的发展机制,我们使用实时成像,谱系分析和单细胞RNA测序评估祖细胞命运。这揭示了HS-HARE5修饰了径向神经胶质祖细胞的行为,在早期发育阶段增加了自我更新,随后神经源性扩大。我们使用基因组编辑的人和黑猩猩(PT)NPC和皮质器官来评估HS-HARE5和PT-HARE5的相对增强剂活性和功能。使用这些正交策略,我们显示了HARE5驱动器中的四个人类特异性变体增加了增强剂活性,从而促进了祖细胞增殖。这些发现说明了调节性DNA的小变化如何直接影响关键的信号通路和大脑发育。我们的研究揭示了Hars的新功能,这是对人脑皮质的扩张和复杂性至关重要的关键调节元素。
Johnathan Cooper-Knock,1,10,* Sai Zhang,2 Kevin P. Kenna,3 Tobias Moll,1 John P. Franklin,1 Samantha Allen,1 Helia Ghahremani Nezhad,1 Alfredo Iacoangeli,4 Nancy Y. Yacovzada,5 Chen Eitan,5 Eran Hornstein,5 Eran Elhaik,6 Petra Celadova,7 Daniel Bose,7 Sali Farhan,8 Simon Fishilevich,5 Doron Lancet,5 Karen E. Morrison,9 Christopher E. Shaw,4 Ammar Al-Chalabi,4 Project MinE ALS Sequencing Consortium,Jan H. Veldink,3 Janine Kirby,1 Michael P. Snyder,2 和 Pamela J. Shaw 1,* 1 谢菲尔德转化神经科学研究所 (SITraN),谢菲尔德大学谢菲尔德,英国谢菲尔德 2 斯坦福基因组学和个性化医学中心,斯坦福大学医学院遗传学系,斯坦福,CA 94305,美国 3 神经病学系,鲁道夫马格努斯脑中心,乌得勒支大学医学中心,乌得勒支,荷兰 4 基础和临床神经科学系,精神病学、心理学和神经科学研究所,伦敦国王学院,伦敦,英国 5 分子遗传学系,魏茨曼科学研究所,雷霍沃特,以色列 6 生物系,隆德大学,隆德,瑞典 7 谢菲尔德大学谢菲尔德核酸研究所,谢菲尔德,英国 8 分析和转化遗传学部门,医学系,麻省总医院和哈佛医学院,美国马萨诸塞州波士顿 9 南安普顿大学医学院,南安普顿,英国 10 主要联系人 * 通讯地址: j.cooper-knock@sheffield.ac.uk (JC-K.), pamela.shaw@sheffield.ac.uk (PJS)