摘要:目前,复合材料在工程和技术的各个方面都发挥着重要作用,其应用范围不断扩大。最近,人们更加关注天然填料,因为它们适合作为热塑性基质中的增强材料,从而改善这些聚合物的机械性能。生物填料因其成本低、强度高、无毒、可生物降解和易得而得到使用。目前,咖啡渣 (SCG) 作为天然填料越来越受到关注,因为每天都会产生大量的 SCG(咖啡加工产生的食品废料)。这项研究使我们能够确定具有已知技术和工艺参数的活性污泥微生物对含有咖啡渣填料的复合材料机械性能的长期影响。配件由用作基质的高密度聚乙烯 (PE-HD) 和用作改性剂的基于咖啡渣 (SCG) 的填料组成。已确定复合材料的组成及其在生物反应器中的停留时间直接影响接触角值。接触角值的变化与测试材料上生物膜的形成有关。在生物反应器中测试的所有样品的接触角都有所增加,样品 A (PE-HD) 的最低值约为 76.4 度,其余含有咖啡渣填充物的复合材料样品的接触角较高,约为 90 度。研究证实,复合材料中咖啡渣的比例增加会导致微生物的多样性和丰富度增加。在生物反应器中暴露一年多后,含有 40% 咖啡渣的复合材料的微生物数量最多,多样性也最强,而含有 30% SCG 的复合材料位居第二。纤毛虫(Ciliata),尤其是属于 Epistylis 属的固着纤毛虫,是活性污泥和生物反应器中样品浸入生物膜后观察到的最常见和数量最多的微生物群。所进行的研究证实,使用聚合物复合材料模塑件和废咖啡渣形式的填料作为载体可以有效增加生物反应器中的微生物种群。
环氧树脂表现出显着的粘附,机械性能和耐热性,但是,其固有的脆性值得关注。因此,使用环氧树脂作为聚合物基质制备杂化复合材料,并用羧基终止的丁二烯硝酸液橡胶(CTBN)和纳米硅酸盐作为增强材料,以增加机械性能。CTBN和Nanosilica的负载设置为(5 wt。%,10 wt。%,15 wt。%和20 wt。%); (1 wt。%,2 wt。%,3 wt。%和4 wt%。);分别。通过添加各种CTBN负载来增强环氧复合材料。然后,测量了复合材料的断裂韧性和粘弹性粘度性能。在CTBN加载的15 wt。时,在不同的载荷下添加了纳米硅酸盐,以检查复合材料的改善。然后,测量了断裂韧性(K IC),玻璃过渡温度(TG),损耗模量(E”)和存储模量(E')。将CTBN掺入环氧基质基质中可提高骨折韧性高达79.4%,最佳负载为15 wt。%。纳米硅含量也显着影响断裂韧性,在3 wt。%加载时,最大增强了107.7%。随着CTBN含量的增长,玻璃转变温度在15 wt。加载时提高了17.01%,在20 wt。%加载时提高了18.32%。纳米硅酸盐会在3 wt。%的加载和83.33°C下增加玻璃过渡温度,达到74.49°C,在4 wt。%。随着CTBN和纳米硅载荷的增加,损耗模量的增加。在20 wt。%CTBN的加载下,最大值最高可达164.7%。将另外4 wt。%纳米硅硅硅硅硅硅胶加到20 wt。%ctbn,导致损失模量增加到1600%。储存模量也随着CTBN和纳米硅氧硅载荷分别增加到20 wt。%和4WT。%,并且从整齐的环氧树脂中达到1662%。总而言之,15 wt。%CTBN和纳米硅酸盐的组合增加了环氧复合材料的断裂韧性和粘弹性粘度的特性。
认为短切纤维增强 2.2 层压板确实是随机的,这种说法过于乐观,甚至可能具有误导性。目视观察 5 mil 短切纤维 2.2 层压板,其外观不均匀,有深色和浅色区域(图 A)。为了确定短切纤维增强材料的均匀性,使用了 X 射线荧光。玻璃纤维的化学成分主要是氧化硅 (SiO 2 ),其次是 CaO 2 、Al 2 O3、MgO 和 B 2 O 3 。XRF 对重元素的敏感度高于碳或氟。因此,使用 XRF 追踪明暗区域中重 Si 和 Ca 的相对成分。第一个观察结果是,暗区和明区具有不同的密度(未显示表面分析)。散射强度与轻元素和重元素的浓度成正比。需要进行更详细的分析,以获得有关两个区域之间密度差异的定量信息。众所周知,PTFE 的 Dk 取决于高温致密化过程中从 PTFE 复合材料中压缩出来的空气量。图 B 显示了浅色和深色区域的 XRF 散射强度重叠(亚表面体分析)。深色区域的硅含量是深色区域的 2.35 倍,钙含量是深色区域的 1.34 倍。氧化硅(二氧化硅)的 Dk 为 3.28,明显高于 PTFE 的 2.1 Dk。硅和钙的不均匀分布表明制造过程容易产生非均匀的介电材料。目前尚不清楚哪种材料更均匀 - 短切纤维或连续编织增强的 2.2 Dk PTFE 复合材料。但必须指出的是,短切纤维层压板上的浅色和深色区域的域尺寸非常大,肉眼可见,并且肯定与编织玻璃纤维 PTFE 层压板(TLY-5)相当。真正随机短切纤维增强层压板的 x、y 和 z CTE 值相等。具有不同 Si 和 Ca 浓度的浅色和深色区域的大区域尺寸表明,层压板内可能存在具有波动 CTE 值的不同区域。
我们的看法:PCBL是印度最大,也是世界第七大炭黑公司,该公司本质上用作制造轮胎的增强材料。该公司在三个主要产品线中有存在:1)轮胎; 2)表演黑人和3)特色黑人。PCBL已成长为碳黑色细分市场中的大型参与者之一,在60多个国家 /地区拥有300多个领域的投资组合。为了减少对橡胶黑色的依赖并使收入流多样化,它开始通过其性能黑色细分市场开发非轮胎产品,并涉足特种黑色细分市场,该细分市场在塑料,碳粉,油墨和电池中都有应用。在特种碳黑段中,该公司拥有120多个成绩。去年,PCBL收购了Aquapharm Chemicals是磷酸盐的关键参与者,以扩大其专业产品组合。从商品级低利润轮胎细分市场到高利润专业黑色细分市场的转变将有助于该公司扩大利润率并降低依赖单个细分市场的风险。我们认为,该公司在未来几年的后果1)降低了煤焦油价格,降低了中国参与者的竞争力2)欧洲和北美制造工厂的竞争力有限 /缓慢扩展3)通过引入专业黑碳的新等级来提高专业黑碳的新等级,并促进了新产品的良好产品和新产品,并促进了新的产品和新产品,并构成了新的产品和5)。管理层的目标债务/EBITDA为2倍,预计将在未来1 - 2年内实现。橡胶黑色和20,000吨特种碳黑色的容量扩展将有助于PCBL可以很好地利用由于结构变化而产生的新兴出口机会。我们预计,由于碳黑色容量和数量的增加,运营现金流量将在未来5年内增加,这将负责公司的债务和资本支出要求。估值和建议:
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。
氟化物在许多国家(例如中国,印度,澳大利亚,美国,埃塞俄比亚等)都是重要的污染物。过于低浓度的氟化物会导致骨质疏松症和腐烂,从而导致牙膏与氟化物一起使用。然而,由于天气干燥和地质条件,尤其是在含有氟化物污染的行业中,更多的区域的氟化浓度高于所需的氟化物。氟化物的饮用水标准由世界卫生组织统治为1.5 ppm,中国受监管的标准为1.0 ppm [1]。长期服用过多的氟化物会带来艾尔病,骨骼的流易病,牙齿流体病,肾结石,肠道和肝脏疾病等。因此,研究了不同的治疗技术以处理过多的氟化物。C. S. Boruff报道了使用氢氧化钙在1934年1月使用的含氧化钙来处理含氟化物的废水[2]。降水方法打开了伏地以去除氟化物。应用吸附,离子交换,电流,膜技术,溶剂提取和电吸附以从自然,生命和行业中删除氟化物[3-10]。离子交换需要离子交换树脂,这使得在离子交换列中易于交换氟化物。但是,离子交换树脂易于达到饱和,通常需要再生。电流使用可以将金属变为金属离子的电能。金属离子可以将氟化物结合起来,从而引起浮动。它带来了金属污染和功耗。氟化物可以被膜的孔径阻塞。膜结垢是该技术的重要风险。溶剂提取需要提取和反向提取。冗余过程限制了应用程序。吸附和电吸附使用材料与频率的键合能力。吸附也是处理水污染的重要方法[11]。电吸附是吸附的开发,该吸附是应用电场来增强材料以去除氟化物的结合能力。吸附材料是提高吸附能力,吸附率,高选择性,pH值,价格和回收特性的主要因素。在本文中,我们将讨论Fuoride的吸附材料,因为本文在本文中进行了大多数研究,涵盖了:(1)1930年至2000年吸附材料的过去:最初的准备工作,用于删除U-Oride的申请; (2)从2001年到2021年的吸附材料的当下:修改了有关氟化物去除的机制; (3)开发吸附剂的未来:设计,捕获氟化物的屏幕。这提供了开发吸附材料的时间表,用于处理含有氟化物的废水。
MS&T22 全体会议 星期二 下午 宴会厅 A 74 MS&T22 海报展示会 星期一 下午 宴会厅 BC 112 ACerS Richard M. Fulrath 奖颁奖会 I 星期一 下午 407 33 ACerS Richard M. Fulrath 奖颁奖会 II 星期二 上午 407 54 ACerS 基础科学部 Robert B. Sosman 讲座 星期三 下午 407 96 ACerS 科学与社会前沿 - Rustum Roy 讲座 星期二 下午 407 74 ACerS GOMD Alfred R. Cooper 奖颁奖会 星期二 上午 412 65 ACerS/EPDC:Arthur L. Friedberg 陶瓷工程辅导与讲座 星期一 上午 407 11 增材制造 增材制造与蜂窝/晶格结构:设计、实现与应用 蜂窝/晶格结构 I 星期一 上午 305 11 蜂窝/晶格结构 II 星期一 下午305 33 海报会议 星期一 下午 宴会厅 BC 115 蜂窝/晶格结构 III 星期三 上午 307 77 增材制造建模、仿真和机器学习:微观结构、力学和工艺力学性能 星期一 上午 303 11 微观结构与缺陷 I 星期一 下午 303 33 海报会议 星期一 下午 宴会厅 BC 115 机器学习和人工智能 星期二 上午 303 54 微观结构与缺陷 II 星期三 上午 303 77 上午工艺 星期三 下午 303 96 陶瓷基材料的增材制造:工艺开发、材料、工艺优化和应用 陶瓷基材料的增材制造 I 星期一 上午 307 12 陶瓷基材料的增材制造 II 星期一 下午 307 34 海报会议 星期一 下午 宴会厅 BC 116 陶瓷基材料的增材制造 III 星期三 下午 307 97高温和超高温陶瓷与复合材料的增材制造:加工、特性和测试 复合材料和增强材料 WED AM 306 78 新方法与特性 WED PM 306 97 金属的增材制造:微观结构、性能和合金开发 铁基合金 - 316L MON AM 301 13 镍基超级合金 MON AM 302 13 功能材料和钨基系统 MON PM 301 35 铝合金 MON PM 302 35 铁基合金 II TUE AM 301 54 镍基合金 II TUE AM 302 55 高温和耐火材料 WED AM 301 78 其他有色金属材料 WED AM 302 79 其他材料 WED PM 301 98 加工与特性 WED PM 302 98 聚合物基材料的增材制造:挑战与潜力 聚合物基材料增材制造的建模/仿真与创新 MON PM 306 36
多糖和蛋白质等天然聚合物被广泛用作制造先进材料的基质[1-4]。在众多的天然聚合物中,细菌纳米纤维素 (BNC)、纤维素纳米纤维 (CNF) 和纤维素纳米晶体 (CNC)(即纤维素的三种纳米形式)目前在现代科学和技术领域备受关注[5-7]。这些纳米级纤维素基质的环保性质、独特性能和多种功能正在被研究,以设计先进的纳米复合材料和纳米杂化材料,应用于力学、光学、电子、能源、环境、生物和医学等众多领域。纳米材料特刊的标题为“先进的纳米纤维素基材料:生产、特性和应用”,汇集了来自世界顶尖科学家研究纳米纤维素的原创研究和评论文章。因此,本期特刊收集了一篇关于纤维素纳米材料表征的评论论文 [8] 和八篇研究论文,重点关注 BNC [9-11]、CNF [12-15] 和 CNC [16] 用作复合材料的增强材料 [13-15] 以及生产燃料电池的离子交换膜 [9]、组织工程和伤口愈合的贴片 [10, 11] 以及用于癌症治疗的纳米系统或纳米载体 [15, 16]。在题为“纳米级红外光谱表征纤维素纳米材料的最新进展”的论文中,Zhu 等人。 [ 8 ] 综述了当前最先进的纳米级红外光谱和成像技术,即基于原子力显微镜的红外光谱 (AFM-IR) 和红外散射扫描近场光学显微镜 (IR s-SNOM),在表征纤维素纳米材料方面的应用最新进展。作者指出,AFM-IR 和 IR s-SNOM 是两种用于纳米级空间分辨率成分分析和化学映射的技术,还可以提供有关纤维素纳米材料的机械、热和电性能的深刻信息 [ 8 ]。Vilela 等人的研究。 [9] 证明了将 BNC(即微生物胞外多糖)与水溶性阴离子磺化木质素衍生物(即木质素磺酸盐)和天然交联剂(即单宁酸)结合起来生产具有良好机械性能(最大杨氏模量约 8.2 GPa)和吸湿能力(48 小时后约 78%)和最大离子电导率为 23 mS cm−1(在 94 ◦ C 和 98% 相对湿度下)的独立均质膜的可行性。尽管所实现的电导率值与文献中报道的其他全生物基离子交换膜相当或更高,但它们仍然比目前燃料电池中使用的标准商用 NafionTM 离聚物低两个数量级。尽管如此,作者认为,这项研究可能有助于开发环境友好型导电隔膜的漫长而艰辛的道路,特别是通过利用农业和工业副产品的剩余原材料 [ 9 ]。Kutov á 等人的研究也同样有趣。[ 10 ] 研究了干燥方法(风干或冷冻干燥)和随后的氩等离子体改性对导电隔膜的影响。
现代牙髓病学中的生物相容性材料:趋势和应用 Hesham Mohammed S Alamri 1 , Amer Abdullah Ali Al Shehri 2 , Abdulaziz Mohammed E Alzahrani 2 , Abdulrahman Thabet M Asiri 2 , Abdullah Ali Abdulrahman Alshehri 2 , Arif Ali G Alamri 2 , Yanallah Hamed Mohammed Algoofy 3 , Ahmed Zayed A Alghamdi 4 , Nawaf Ayedh Ali Alqahtani 5 , Ali Saleh Ali Alshehri 6 1 全科牙医,Aseer 健康集群质量和患者安全管理,阿卜哈,沙特阿拉伯 2 全科牙医,合规管理,阿卜哈,沙特阿拉伯 3 牙科助理,合规部门实施部门,阿卜哈,沙特阿拉伯 4 全科牙医,Ahad Rufaidah 综合医院,Ahad Rufaidah,沙特阿拉伯 5 全科牙医,牙科诊所,Al-Sarea 初级保健中心,沙特阿拉伯艾卜哈 6 全科牙医,Al-Souda 初级保健中心,沙特阿拉伯艾卜哈 摘要:随着生物相容性材料的引入,牙髓病学领域取得了重大进步,这些材料可提高治疗效果并促进愈合。本综述探讨了生物相容性材料在现代牙髓病学中的当前趋势和应用,强调了它们在改善患者预后方面的重要性。生物相容性材料被定义为与生物组织发生良好相互作用的物质,在各种牙髓病学手术中起着至关重要的作用,包括根管治疗、牙髓盖术和穿孔修复。传统材料如牙胶和氧化锌丁香油长期以来一直用于牙髓病学;然而,它们的局限性促使人们开发创新替代品。最近的进展包括使用生物陶瓷、硅酸钙基材料、生物活性玻璃和树脂基复合材料。生物陶瓷,例如矿物三氧化物聚合物 (MTA) 和 Biodentine,因其出色的密封性能、生物相容性和刺激硬组织形成的能力而备受赞誉。生物活性玻璃具有独特的性能,可促进与周围组织的整合并促进愈合。树脂基材料也经过了改性,以增强其生物相容性和对牙本质的粘附性,从而在临床应用中提供更好的性能。再生牙髓病学等新兴趋势侧重于恢复牙髓活力和促进组织再生,凸显了生物相容性材料在现代实践中日益增长的重要性。此外,3D 打印和纳米技术等技术的整合为开发具有卓越性能的定制和增强材料铺平了道路。总之,生物相容性材料正在改变现代牙髓病学,为临床医生提供先进的选择,不仅可以满足牙齿组织的生物需求,还可以提高整体治疗成功率。随着研究的不断发展,牙髓治疗的未来似乎充满希望,有可能实现更有效、以患者为中心的牙科护理方法。