技术增持技术参与者即将乘坐samuel tan l samueltan@kenanga.com.my骑数据中心繁重的繁荣••在数据中心施工阶段12-18个月之后,我们相信随后的适应阶段预计将在4QCYCY24-1HCY25期间发生。这个即将到来的繁荣(与RM97.8B的TAM一起)将聚焦技术和EMS播放器,例如PIE(OP; TP:RM6.75),Natgate(OP; TP:TP:RM2.30),MPI(OP; TP:TP:RM46.84)和Inari(op; op; tp; tp; tp:rm4.60),这是该设置的好处。我们的首选是PIE,LGMS和INARI。•数据中心中的网络安全是雷达下机会,尚未得到应有的关注。我们喜欢这个空间中的LGM(OP; TP:RM1.90),是马来西亚唯一具有深厚护城河的纯网络安全服务。•马来西亚处于结构数据中心趋势的早期阶段,类似于太阳能繁荣的初始阶段(LSS1)。这种多相开发为建筑和装修玩家提供了丰富的机会。ssb8(未注重)在这个不断发展的景观中脱颖而出。
氧化物聚酰胺纳米过滤膜,用于含有单价盐的染料溶液的脱盐,膜科学杂志。539(2017)128–137。 https://doi.org/10.1016/j.memsci.2017.05.075。 [3] M.E.A. ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯539(2017)128–137。https://doi.org/10.1016/j.memsci.2017.05.075。 [3] M.E.A. ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯https://doi.org/10.1016/j.memsci.2017.05.075。[3] M.E.A.ali,L。Wang,X。Wang,X。Feng,薄膜复合膜嵌入了石墨烯
太阳能价格保持较低,使特许权持有人能够利用规模经济,投标量高达500兆瓦。2024年的太阳能电池板价格下跌26%的主要原因是制造能力的大量供应量,尽管过剩的额外供应量可能会持续下降,但我们预计价格不会进一步下跌。持续下降可能会将大多数太阳能制造商在竞争激烈的环境中维持市场份额时,将大多数太阳能制造商进入损失领土。持续的低价格已经给制造商带来了巨大压力,其中一些人无法承受财务压力,可能会退出市场。尽管这种压力可能为潜在的恢复奠定了基础,但在2025年的重大反弹似乎不太可能。结果,太阳能EPCC玩家仍然可以从较低的面板价格中受益,估计的GP利润率约为LSS5+的低年级。以目前的价格,我们预计获胜率在RM0.14/kWh和RM0.18/kWh之间,产生了8%的项目IRR。
机器学习 - 为医疗保健Kaiyi Zhang,Jianwu Wang,Tianyi Liu,Yifei Luo,Yifei Luo,Xiaodong Chen* K.材料科学与工程学院,Nanyang Technological University 50 Nanyang Avenue,新加坡639798,新加坡电子邮件:chenxd@ntu.edu.edu.edu.sg Y. Luo博士,X. Chen材料研究所教授,科学,技术与研究机构,科学,技术与研究机构(A*Star),2 Fusionopolis Way,Innovis,Innovis,Innovis,#083 33关键词:非侵入性生物传感器,机器学习,生理学,数据处理,临床实践,食品安全
我们维持对该行业的超重,这是政府强大的重新执行行动和扩大太阳配额分配的基础。着眼于2025年,报道节能计划的电力成本和公司要求的上升将加速采用太阳能,使太阳能EPCC玩家的订单订单读书升至历史最高。关键催化剂包括800MW Corporate Green Power计划(CGPP)的EPCC合同中的RM2.4B,其收益确认为1 QCY25,RM5B在LSS5 EPCC合同中,将在同一时期授予的EPCC合同,作为成功的出价,已逐渐披露。这些举措预计将在2028年之前维持该行业的增长,这也与面板价格下跌,因为过度供应,太阳能EPCC承包商的利润率增加,并激发了对太阳能系统的投资。我们的部门顶级选秀权是Slvest(OP; TP:RM1.91)和Samaiden(OP; TP:RM1.51)。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 2 月 14 日发布。;https://doi.org/10.1101/2021.02.13.431112 doi:bioRxiv preprint
融合细丝制造(FFF)或融合沉积建模(FDM)是多种领域中广泛使用的增材制造技术。然而,空隙,层之间的粘结差,而FDM Pa-Rameter通常会影响FDM打印的物体,从而改变其强度。研究人员已经研究了用于FDM打印的碳纳米管(CNT)复合材料,以提高其特征。本文提出了一个用于预测机械性能的CIENT三级计算模型,以及用于制备CNT融合的昀碗哀叹的独特淬火过程。通过广泛的参数分析揭示了FDM过程参数在机械性能上的ince。与纯ABS相比,注入CNT的复合材料表现出更好的键合和模量。实验研究表明,对于ABS和ABS-CNT而言,层高度的增加分别使弹性模量分别恶化了21.03%和27.92%。在pure ABS中,In ll密度分别从100%增加到75%和50%,将模量增加49.3%和69.6%。分别在0 - 0 0和0 - 90 0方向上打印的零件,分别为纯ABS和纳米复合材料发现了2.11%和1.7%的降低。计算结果与实验性昀碗nding非常吻合,在0.1 mm和0.2 mm的层高度的差异从10.15%到5.5%不等。对于其他参数(例如栅格方向),0 - 0 0和0 - 90 0的差分别为5.3%和6.9%。计算结果与实验结果一致,使其成为优化FDM打印和利用CNT以提高零件性能的有用工具。
引言。量子振幅的复相位在量子算法[1-6]和量子传感[7]中起着至关重要的作用。许多算法需要测量两个量子态之间的相对相位[8-17]。用于此目的的常见子程序是 Hadamard 检验,它通过干涉将相位信息转换为概率[18]。尽管实验取得了令人瞩目的进展,但由于实现所需的受控酉运算的挑战,Hadamard 检验在大多数应用中仍然遥不可及。在本文中,我们提出了一种替代方法来确定某些状态之间的复重叠,该方法不使用辅助量子位或全局受控酉运算。与其他无辅助方案 [12,19] 不同,我们的方法不需要准备与参考状态的叠加,而叠加极易受到噪声的影响[20-25]。我们的方法不是基于干涉,而是基于复分析原理。所提出的方法适用于(广义)Loschmidt 振幅形式的重叠