心肌梗塞会导致心肌细胞丧失,并且出生后耗尽的心肌细胞增殖能力会影响心脏修复过程,最终导致心力衰竭。这项研究旨在研究聚(ADP-核糖)聚合酶1(PARP1)在心肌细胞增殖和心脏再生中的作用。我们的发现表明,PARP1敲除心肌细胞增殖,心脏功能和疤痕形成受损,而PARP1过表达改善了根尖切除术的小鼠的心脏再生。机械上,我们发现PARP1与热(ADP-核糖基)ates相互作用,热休克蛋白90 Alpha家族B成员1(HSP90AB1)与HSP90AB1和细胞分裂周期37(CDC37)(CDC37)和细胞周期酶活性之间的结合增加,因此激活了心脏模拟细胞细胞细胞周期。我们的结果表明,PARP1通过HSP90AB1的聚(ADP-核糖基)促进心脏再生和心肌细胞增殖,从而激活心肌细胞细胞周期,这表明PARP1可能是治疗心脏损伤的潜在治疗靶标。
心脏的发展,从早期的形态发生到功能性成熟,以及维持其稳态是需要进行心脏组织和不同心外器官系统的合作努力的任务。大脑,淋巴器官和肠道是可以通过在局部或系统水平作用的各种旁分泌signals与心脏交流的互动伙伴之一。缺血性损伤后心脏体内平衡的干扰也需要这些远处的器官的立即反应。我们的心用非收缩粘合性疤痕代替死去的肌肉。我们从能够进行无疤痕修复的动物模型中学到了从心脏和心脏内部因素的能力,而是源自身体其他部位的远距离分子信号,这不仅取决于心脏的能力。在这里,我们提供了参与心脏发展和再生的器官间信号。我们重点介绍了最近的发现和剩余的问题。最后,我们讨论了可能使用治疗方法的器官间调节方法的潜力。
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
急性髓系白血病 (AML) 是一种影响全身的血液系统恶性肿瘤 [1]。尽管对 AML 发病机制的研究日益深入,并且出现了 FMS 样受体酪氨酸激酶 3 (FLT3) 酪氨酸激酶抑制剂 (TKI) [2-4]、异柠檬酸脱氢酶 (IDH) 抑制剂 [5-7] 和 B 细胞白血病/淋巴瘤 2 (BCL2) 抑制剂 [8] 等靶向药物,但大多数患者仍然依赖常规化疗和造血干细胞移植 (HSCT) [9]。作为 AML 中最常见的突变亚型,FLT3 内部串联复制 (ITD) 突变会导致后续信号通路持续激活并增加复发风险 [10]。新一代 FLT3 抑制剂,如吉利替尼,单用时只能部分抑制 AML 细胞生长和暂时的临床反应 [11]。因此,迫切需要探索潜在的
多发性骨髓瘤(MM)是一种普遍的浆细胞恶性肿瘤,代表了一种威胁生命的血液学疾病,具有明显的临床发病率。尽管对全球健康负担有了公认的影响,但确切的分子发病机理仍未完全阐明。通过RNA测序进行的转录组分析表明,多发性骨髓瘤中细胞周期蛋白依赖性激酶调节亚基2(CKS2)的显着上调。通过对患者衍生标本中CKS2表达的定量分析进行临床验证。选择了两个已建立的MM细胞模型(MM.1S和RPMI-8226)进行功能表征。使用CCK-8代谢分析和EDU DNA掺入分析对细胞增殖动力学进行了定量,并使用流式细胞仪评估来评估凋亡指数。建立了一种异种移植小鼠模型,以研究CKS2介导的体内肿瘤发生,并通过途径相关蛋白表达的蛋白质印迹分析补充。对人基碱数据库的生物信息学询问确定了推定的CKS2相互作用,随后通过共免疫沉淀测定法和共焦免疫荧光显微镜进行了验证。通过AlphaFold2通过AlphaFold2预测的分子相互作用界面的结构建模,通过Pymol渲染实现了三维可视化。在这项研究中,我们证明了MM.1和RPMI-8226细胞系中的CKS2敲低可显着抑制细胞增殖和诱导的凋亡。机械研究表明,CKS2耗尽通过PTEN/AKT/MTOR信号轴调节细胞的增殖和凋亡。相反,CKS2过表达增强了恶性增殖,同时抑制了凋亡过程,并在骨髓瘤发病机理中确立了其功能作用。值得注意的是,共免疫沉淀测定法证明了CKS2和硫氧还蛋白(TXN)之间的直接蛋白质 - 蛋白质相互作用,随后的功能验证表明TXN似乎充当了CKS2稳定性的关键上游调节因子。这些发现将CKS2建立为骨髓瘤细胞稳态的关键调节剂,并将其确定为有前途的治疗靶标,需要进一步的临床前验证。
宿主 - 微生物相互作用是包括蜜蜂在内的许多宏观生物的发展和适应性的基础。尽管许多社会蜜蜂受益于垂直传播的肠道细菌,但当前的数据表明,孤立的蜜蜂构成了蜜蜂中绝大多数物种多样性,但缺乏高度专业的肠道微生物组。在这里,我们研究了整个野生蜜蜂bonthophora bomboides Standfordiana的整个生命周期中细菌和真菌的成分和丰度。与期望相反,未成熟的蜜蜂阶段保持了一个独特的核心微生物组,该核心体由静脉细菌属(链霉菌,诺卡氏菌)和真菌Moniliella spathulata组成。休眠(尿布)幼虫蜜蜂占据了最丰富,最独特的细菌和真菌,分别达到其初始拷贝数的33和52倍。我们测试了关于尿布蜜蜂的微生物功能的两个自适应假设。首先,使用孤立的细菌和真菌,我们发现来自育雏细胞的链霉菌抑制了多种致病性丝状真菌的生长,这表明当蜜蜂面对高病原体压力时,在越冬期间在病原体保护中起作用。第二,糖酒精成分随着真菌丰度的重大变化而变化,这表明与蜜蜂冷耐受性或越冬的生物学有联系。我们发现,炸弹抗体有一个保守的核心微生物组,可以通过幼虫的发育和滞育提供关键的适应性优势,这提出了一个问题,即如何维持和忠实地传播这种微生物组。我们的结果表明,关注成熟或活跃的昆虫发育阶段的微生物组可能会忽略宿主休眠期间特定阶段的共生体和微生物适应性的贡献。
通常,诊断和治疗较早的肾癌,结果越好。肾癌期生存期为5年的存活率(1)。肾细胞癌(RCC)是最常见的恶性肾脏肿瘤类型。它是在发生过滤的肾脏的主要物质中发现的。RCC可以在肾脏内显示为单个肿瘤,也可以在同一肾脏内显示为两个或两个或更多肿瘤(2)。10个肾脏癌中约有9个是肾细胞癌。尽管RCC通常在肾脏中成长为单个肿瘤,但可以同时在一个肾脏或两个肾脏中同时有两个或更多的肿瘤(3)。RCC根据实验室中癌细胞的出现分为几种亚型。知道RCC的亚型可以帮助您的医生确定您的癌症是否是由遗传性遗传综合征引起的(4)。尽管在RCC治疗方面取得了许多成功,但治疗方案和反应率在各种分子亚型之间有所不同(5)。治疗肾脏肿块的主要目标用于治愈癌症患者并尽可能保留肾脏功能。保护肾功能对于仅肾脏或另一种类型的肾脏疾病的患者很重要(6)。长的非编码RNA(LNCRNA)是RNA转录本,其长度超过200个核苷酸,但未转化为蛋白质。近年来,LNCRNA被发现是各种生物学功能和基因表达调节的重要参与者(7)。某些LNCRNA表达的变化与各种形式的癌症有关(8)。许多LNCRNA,包括Hotair(9),MRCCAT1(9),UCA1(10),ATB(11),H19(12)和–FTX(13)(13),已在RCC肿瘤发生中鉴定出来,并建议对RCC的重要生物标志物进行重要的生物标志物。核拼接组装转录本1(NEAT1)是一个长的非编码RNA,从家族性肿瘤综合征转录,在11q13.1染色体上的多个内分泌肿瘤(MEN)1型基因座,并编码两个转录变体,NEAT1 -1 -1(3756 bp)和Neateat 1(3756 bp)和Neat11 -2 -226 -Bp- 3756 Bp(3756)。由于缺乏NEAT1的小鼠正常发育,因此似乎不需要Neat1来正常的胚胎发育或成人生活。然而,在另一种情况下,Neat1的遗传消融导致乳腺形态发生异常和泌乳缺陷(15)。如果Neat1的损失与正常的细胞活力和生长一致,则应进一步研究。由于Neat1负责肿瘤起始
核干细胞素 ( NS ) 是一种优先在干细胞和癌细胞中表达的脊椎动物基因,它的作用是调节细胞周期进程、基因组稳定性和核糖体生物合成。NS 及其旁系同源基因 GNL3-like ( GNL3L ) 是在脊椎动物进化枝中从其直系同源基因 G 蛋白核仁 3 ( GNL3 ) 发生复制事件后出现的。然而,对无脊椎动物 GNL3 的研究有限。为了更好地了解 GNL3 基因的进化和功能,我们对水螅纲刺胞动物 Hydractinia symbiolongicarpus 进行了研究,这是一种群体水螅,在其整个生命周期中不断产生多能干细胞,并表现出令人印象深刻的再生能力。我们发现 Hydractinia GNL3 在干细胞和生殖系细胞中表达。GNL3 的敲低减少了不同年龄 Hydractinia 幼虫中有丝分裂和 S 期细胞的数量。通过 CRISPR/Cas9 对 Hydractinia GNL3 进行基因组编辑,导致菌落生长率降低、息肉再生能力受损、性腺形态缺陷和精子活力低下。总之,我们的研究表明 GNL3 是一种进化保守的干细胞和生殖系基因,参与 Hydractinia 的细胞增殖、动物生长、再生和有性生殖,并为 GNL3 和干细胞系统的进化提供了新的启示。
FDA 批准的 1,448 种药物化合物库购自 Selleck Chemicals。INC280 由 Novartis(瑞士巴塞尔)提供。将 HAP1、HAP1 RNF43 KO 和 HAP1 PWWP2B KO 细胞以 2,000 或 3,000 个细胞/孔的密度接种在 384 孔透明底培养板中,加入 20 µL 含有 10% FBS 的 IMDM 或 RPMI 1640 培养基,培养 24 小时。然后,将 10 µM FDA 批准的药物加入孔中,并将细胞再孵育 48 小时。对照细胞未暴露于药物。在增殖测定当天,除去培养基,向384孔板的每个孔中加入20μL新鲜培养基,然后加入5μL MTS溶液(Cell Titer 96 Aqueous One Solution细胞增殖测定试剂盒;美国威斯康星州麦迪逊市Promega公司),将板在37°C下孵育1小时。
目的:探讨LZAP在宫颈癌发生发展中的关系及作用机制,为宫颈癌的治疗提供新的靶点和干预方法。方法:利用TCGA等在线数据库对LZAP表达水平进行数据挖掘和分析,建立稳定过表达LZAP的宫颈癌细胞株,探讨LZAP过表达对细胞增殖、侵袭、迁移及体内成瘤的影响及其作用机制。结果:研究显示,LZAP在宫颈癌中表达上调,LZAP过表达能显著促进宫颈癌细胞的增殖、集落形成、侵袭和迁移能力。裸鼠成瘤试验显示,LZAP过表达可促进宫颈癌细胞在体内的成瘤性;LZAP还能促进AKT473位点磷酸化,促进上皮间质转化(EMT)。结论:LAZP在宫颈癌中表达增高,并通过促进AKT磷酸化增强宫颈癌细胞的侵袭、转移及EMT。