记录的版本:此预印本的一个版本于2021年3月26日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-22192-2的发布版本。
小牛企业对奶牛场利润的贡献通常被认为很小,对奶牛场的牛肉选择通常不被视为优先级。然而,随着某些国家的乳制牛群的迅速扩张速度将在未来发生变化,奶牛群生育能力的改善相结合,以减少奶牛场所需的乳制品犊牛的优势。这提供了增加牛肉犊牛比例的机会,从而增加了小牛销售的价值和犊牛的销售性。牛肉胚胎可能会成为乳制品的新育种工具,因为生产商需要重新评估其繁殖政策,这是由于福利担忧和小牛价格差而需要重新评估其繁殖政策。辅助生殖技术可以通过允许增加遗传学精英大坝产生的后代来加速遗传增益。综合乳制品 - 牛奶牛肉系统有以下三类供体女性:(1)精英乳制品大坝,使用卵子拾起,从活着的女性中回收卵母细胞,并在体外用精液中的精液从精英奶牛场中施肥; (2)精英牛肉大坝,那里的卵母细胞是用卵子拾起从活雌性中回收的,并用精英牛肉牛的精液施肥; (3)商业牛肉大坝(≥50%的牛肉遗传学),其中卵巢是从battoir splausger中收集的,卵母细胞与精英牛肉牛的精液受精,这些精液适合于奶牛上使用(导致胚胎(胚胎含有≥75%的牛肉遗传学))。本评论的目的是描述除了将乳制牛群农作物的转化为良好的遗传优点乳制雌性犊牛和优质牛肉犊牛的结合外,这些共同发展的预期益处包括牛奶和牛肉产量的加速遗传增益。
摘要为DC-DC转换器设计了新的电路拓扑。提议的转换器采用单个功率开关,该电源开关将传统的增强与光伏(PV)面板的单端主电感器转换器(SEPIC)集成在一起。从9 V DC输入中开发并实现了105 V DC输出的原型。使用理论和实际验证验证了所提出的拓扑的性能。结果表明,较高的电压增长率为11.67,低占空比为0.82,并且在大约54 V的组件上降低了电压应力。该电路可用于PV面板和其他需要DC-DC电压加速转换率的可再生能源。关键字:DC-DC加速转换器,光伏(PV)面板,电压增益,占空比和电压应力。引言可以通过从化石燃料转换为可再生能源资源来实现碳中性社会(Isah等人,2019年)。这种能源转型能够增强经济,给灾难带来韧性,并帮助农村社区对环境的损害较少,以获取电力(Isah等,2020)。太阳能是自然可用,干净,廉价的能源之一,需要使用光伏(PV)进行发电(Gopi and Sreejith,2018; Engin和Engin andçak,2016)。PV面板以机电能量形式利用太阳,并通过使用太阳能电池将其转化为电能(Oulad-Abbou等,2019; Ahmad等,2019; Jiang等,2016)。天气条件和安装区域是影响PV板性能的一些重要因素(Kuo等,2015)。发电系统可以用于网格连接或微电网连接(Kuo等,2015;Öztürk等,2018)。通常,网格连接需要实用程序变电站。出于这个原因,建造太阳能农田需要许多光伏面板,而太阳能农田又占据了一个用于农业实践和其他目的的广泛领域,
大多数电信和射频传感市场都在向更高性能的无线链路和传感技术迈进。为了实现这些新的吞吐量、延迟、可靠性、无线连接设备数量、可配置性和传感分辨率,从蜂窝电信到军用雷达应用,业界已投入大量资金来使用频谱的更高频率部分。这些努力要求开发更强大的先进/有源天线系统 (AAS) 用于电信,以及有源电子控制天线阵列 (AESA) 用于军事/国防传感和干扰技术。需要在更高频率下使用更复杂的 AAS 来克服与微波和毫米波通信和传感相关的高大气衰减和对准挑战。在大多数情况下,电子可控相控阵天线一直是实现 AAS 的最受探索的解决方案。
本研究报告了一种面积高效、无电感、低噪声 CMOS 跨阻放大器的设计,适用于入门级光时域反射仪。本研究提出了一种新方法,用于在电容反馈 TIA 中实现可编程增益,使用输入级偏置阻抗和其中一个反馈电容器独立调整低频和高频行为。该方法解决了快速前馈或电阻反馈拓扑的典型噪声问题,同时缓解了关键 TIA 性能指标的权衡。提出了一种更精确的放大器模型,该模型考虑了电容隔离和两个偏置电路的影响。建议对参考设计进行进一步修改,包括基于 PMOS 的偏置电路实现,以解决电压余量问题。该电路采用标准 180 nm CMOS 工艺实现,采用 1.8 V 电源供电,电流为 11.7 mA。
介绍了一种使用简单单级辅助放大器的新型增益提升折叠共源共栅运算放大器。所提出的辅助放大器的设计方式是,无需使用共模反馈网络,即可获得适当的输入和输出直流共模电压。辅助放大器的输入端由耦合电容器和浮栅 MOS 晶体管隔离。因此,直流输入电压电平限制已被消除。辅助放大器的输出端也使用了二极管连接的晶体管,使输出电压电平保持在所需的水平。与更复杂的放大器相比,简单的单级辅助放大器对主放大器施加的极点和零点更少,而且功耗也更低。0.18μm CMOS 技术的仿真结果显示直流增益增强了约 20 dB,而输出摆幅、斜率、稳定时间、相位裕度和增益带宽几乎与之前的折叠共源共栅设计相同。
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'
版权所有 02/2021 Redwire Corporation。Redwire 保留对此处任何产品进行更改的权利,恕不另行通知。Redwire 不对其产品是否适用于任何特定用途作出任何保证、陈述或担保,也不承担因应用或使用任何产品或电路而产生的任何责任,并明确否认任何和所有责任,包括但不限于特殊、间接或附带损害。“典型”参数(包括“典型值”)必须由客户的技术专家针对每个客户应用进行验证。Redwire 不转让其专利权或他人权利下的任何许可。Redwire 产品并非设计、预期或授权用作系统或任何其他应用中的组件,在这些应用中,Redwire 产品的故障可能会导致人身伤害或死亡。如果买方购买或使用 Redwire 产品用于任何此类预期或未经授权的应用,买方应赔偿并保护 Redwire 及其管理人员、员工、子公司、附属公司和分销商免受所有索赔、成本、损害和费用以及合理的律师费,这些索赔、成本、损害和费用以及合理的律师费直接或间接地因与此类预期或未经授权的使用相关的人身伤害或死亡索赔而产生,即使此类索赔声称 Redwire 在零件的设计或制造方面存在疏忽。Redwire 是一家提供平等机会/采取平权行动的雇主。本文献受所有适用的版权法约束,不得以任何方式转售。
摘要圆形微带贴片天线(CMPA)的增益和带宽增强的设计已通过使用用作超级材料的矩形金属板中的圆形凹槽进行了提出。提出的概念是独特的,并且简单地作为增强增益和带宽的灵活方法。矩形形状的泡沫间隔剂已用于提供机械支撑,以放置优化的凹槽蚀刻矩形金属板超材。拟议的天线提供了约35.5%的阻抗匹配带宽在8.45 GHz至12 GHz之间的带宽,总带宽为3.55 GHz,而传统的圆形贴片为9.95 GHz,几乎显示了势不足的带宽(480 MHz)的4.8%,大约显示了4.8%的抗衡。峰值增益为7dbi。除了增强的带宽特征co-pol。在整个操作频段中保持10DBI的峰值增益。与常规CMPA相比,实现了3DBI增益。对于实验验证,已经使用市售介电底物制造了一组天线原型。测得的结果显示与模拟预测相似。关键字:带宽,圆形贴片天线,圆形凹槽,超隔板