摘要澳大利亚是受厄尔尼诺 - 南方振荡(ENSO)强烈影响的地区之一。最近的2020–2023LaNiña活动以破纪录的降雨和洪水为标志。三尼娜(LaNiña)期间的连续湿条件促使我们使用观察性数据集探索单年和多年ENSO事件对澳大利亚降雨的影响。我们发现,尽管在单一或双厄尔尼诺事件期间,降雨影响没有差异,但与第一年和第二年相比,澳大利亚降雨往往会增加三年和第二年。尽管在热带太平洋中没有加强拉尼娜,但在第三个拉尼娜一年的降雨影响增强了,这表明其他过程(例如当地降雨 - 土壤水分反馈)可能在延长澳大利亚多年LaIniña事件的影响中发挥作用。
根据第五次全国气候评估,美国西部对水的需求正在增加,干旱的频率和强度预计将加剧。通过人工增雨增加降水的能力可以帮助缓解干旱带来的一些水资源管理挑战。人工增雨在美国自 1940 年代开始实行。然而,最近,雷达和传感器技术的进步使得研究具有足够的精度,表明人工增雨在某些条件下可能是有效的。
在当今无边界网络中,零信任架构 (ZTA) 的采用正在获得发展势头。通过全面实施 ZTA,攻击者不太可能从受感染的端点开始通过网络传播。但是,可以利用受感染端点的已通过身份验证和授权的会话来执行有限但恶意的活动,最终使端点成为 ZTA 的致命弱点。为了有效检测此类攻击,已经开发了基于攻击场景方法的分布式协作入侵检测系统。尽管如此,高级持续性威胁 (APT) 已证明其能够以高成功率绕过这种方法。因此,攻击者可以不被发现地通过或可能改变检测日志记录机制以实现隐身存在。最近,区块链技术在网络安全领域展示了可靠的用例。在本文中,受 ZTA 和基于区块链的入侵检测和预防融合的启发,我们研究了如何将 ZTA 扩展到端点。即,我们对 ZTA 模型、以端点为重点的真实世界架构和基于区块链的入侵检测系统进行了最先进的审查。我们讨论了区块链的不变性加强检测过程的潜力,并确定了未解决的挑战以及潜在的解决方案和未来方向。
2024年的出色表现有助于提高生产率的增长,更接近其历史(第二次世界大战后)的平均水平。在当前的商业周期(2019- 2024年)中,非农业劳动生产率的增长平均每年1.8%,比以前的周期(2007- 2019年)平均1.5%的步伐高了几分,而远离经济长期的长期平均水平为2.1%。最近的强度可能反映出大流行前贫血生长后的赶上(图表)。的生产率明显平淡无奇,因为低迷的资本投资沮丧,并压制了劳动力市场的活力。自大流行以来,劳动力市场的正常化,加上远程工作和避免劳动力技术的投资的盛行,近年来似乎提高了生产率增长的运行速度。
本研究采用灰色关联分析和增材制造质量方法,分析了 Ti-6Al-4V 合金选择性激光熔化制造的质量体系。在所提出的方法中,通过选择最佳的替代 AM 技术工艺参数组合来解决多标准问题,以满足根据多项标准制造的航空航天零件所需的质量参数(期望目标)。开发了用于规划增材制造的决策算法,用于构建替代方案矩阵和评估适应系数。选择精度、粗糙度、强度、成本、打印时间作为模型中的质量标准。基于对 SLM、DMD 和 EBM 技术的适应系数值的分析,第一种用于制造航空航天产品的技术——选择性激光熔化,被认为是最佳的。关键词:航空航天零件;增材制造;质量参数;灰色关联分析;适应系数。
摘要 — 使用植物纤维替代碳纤维或玻璃纤维等人造纤维是当今许多研究人员的研究课题。植物纤维具有可再生、可降解、低毒性和低成本等特点。本文评估了环氧聚合物基质中的剑麻纤维与玻璃纤维混合复合材料的拉伸强度、弯曲强度和弹性模量的力学性能。将纤维在 10% 重量的氢氧化钠溶液中处理,然后根据 ASTM D3039 和 D790 标准在万能试验机上进行拉伸试验。性能最好的复合材料是剑麻 + 玻璃纤维混合物,拉伸强度为 86%,弹性模量为 64%。在弯曲试验中,结果显示混合复合材料的最大应力为 119%,较大断裂应力为 138%。
除了改进的指标外,该报告还将允许比较疫苗接种覆盖率和数据质量,包括县和州的平均值。这种比较分析对于跟踪进展和建立实践基准至关重要。该报告还是建立客观绩效标准和跟踪绩效指标的有力工具。这些是有价值的工具,可以帮助实现实践的战略规划目标,并帮助确定疫苗接种管理和数据报告中需要改进的领域。通过解决这些领域,可以增强整体患者护理,确保所有印第安纳州人的健康。
阀门设计和材料方面的最新进展已使渣油加氢裂化反应器 (RHR) 的运行得到显著改善。这些创新解决了热冲击、腐蚀和这些关键工艺中精确控制的需求等关键问题。例如,采用先进材料和制造技术(如陶瓷涂层和 3D 打印)的隔热套管已成为保护阀门免受快速温度波动影响的有效解决方案。这些设计最大限度地减少了通过传导、对流和辐射的热传递,大大延长了阀门的使用寿命并减少了维护要求。垫片技术也已发展以满足 RHR 环境的需求。高性能垫片(包括采用贵金属镀层的垫片)具有增强的耐腐蚀性、热稳定性和耐用性。这些进步确保了更好的密封性能并降低了泄漏风险,这对于加氢裂化操作的安全性和效率都至关重要。此外,可编程逻辑控制器 (PLC) 和高级控制面板等自动化系统的集成彻底改变了 RHR 中的阀门管理。这些系统可实现精确控制、高效清洗、最佳加热循环和增强的安全协议。强大的硬件和先进的软件相结合,可以实现实时监控和调整,最大限度地减少人为错误并最大限度地提高流程效率。