摘要:通常的叙述是对人工智能 (AI) 的强烈反对。最近的一项研究发现,当法官获得决策支持时,差距最终会增加——这并不是因为算法有偏见——事实上,算法本应导致差距更小。但法官选择性地关注算法,这导致了更大的差距。本文主张采用一种渐进式方法,利用社会偏好经济学的最新理论见解。核心见解是,法官是道德决策者——你是对的还是错的,是好是坏——为了了解这些决策者的动机,人们可能会转向自我形象动机——这是近年来活跃的行为研究主题。每个阶段都利用与自我相关的动机:自我形象、自我提升、自我理解和自我。在第 1 阶段,人们使用 AI 作为支持工具,加快现有流程(例如,通过预填表格)。一旦他们习惯了这一点,他们就更容易接受附加功能(第 2 阶段),其中人工智能成为选择监视器,指出选择不一致之处并提醒人类在类似情况下的先前选择。第 3 阶段将人工智能提升为更通用的教练,提供有关选择的结果反馈并强调决策模式。然后,在第 4 阶段,人工智能引入其他人的决策历史和模式,作为专家社区的平台。这个框架与当前的框架形成对比,在当前的框架中,人工智能只是推荐最佳决策。
2。Giannella M,Bartoletti M,Campoli C等。 产生碳青霉酶的肠杆菌科定殖对肝移植后感染风险的影响:一项前瞻性观察群研究。 临床微生物感染。 2019; 25(12):1525-1531。 3。 Qiao B,Wu J,Wan Q,Zhang S,Ye Q. 因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。 BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。Giannella M,Bartoletti M,Campoli C等。产生碳青霉酶的肠杆菌科定殖对肝移植后感染风险的影响:一项前瞻性观察群研究。临床微生物感染。2019; 25(12):1525-1531。 3。 Qiao B,Wu J,Wan Q,Zhang S,Ye Q. 因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。 BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2019; 25(12):1525-1531。3。Qiao B,Wu J,Wan Q,Zhang S,Ye Q.因抗多药革兰氏阴性菌血症的腹部固体器官移植受者的死亡率的因素。BMC感染。 2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。BMC感染。2017; 17(1):171。 4。 Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2017; 17(1):171。4。Giannella M,Freire M,Rinaldi M等。 开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。 临床感染。 2021; 73(4):E955-E966。 5。 Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。 在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。 临床微生物感染。 2021; 27(6):915.e1-915.e3。 6。 Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。 外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。 int j抗小动物剂。 2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。Giannella M,Freire M,Rinaldi M等。开发了肝移植后耐碳青霉烯的肠杆菌科感染的风险前字典模型:一项跨国公司研究。临床感染。2021; 73(4):E955-E966。5。Papadimitriou-Olivgeris M,Bartzavali C,Georgakopoulou A等。在重症患者中产生碳纤维酶的肺炎Kleblebsiellae肺炎血流感染的重新培训队列中增量CPE评分的外部验证。临床微生物感染。2021; 27(6):915.e1-915.e3。6。Machuca I,Gutiérrez-GutiérrezB,Rivera-Espinar F等。外部验证碳青霉烯氏菌肺炎菌群菌群中的增量CPE死亡率评分:colistin耐药性的预后意义。int j抗小动物剂。2019; 54(4):442-448。 7。 Jorgensen SCJ,Trinh TD,Zasowski EJ等。 感染了。 2020; 9(2):291-304。 8。 Am J移植。 2020; 20(6):1629-1641。2019; 54(4):442-448。7。Jorgensen SCJ,Trinh TD,Zasowski EJ等。感染了。2020; 9(2):291-304。8。Am J移植。2020; 20(6):1629-1641。评估用头孢济胺 - 阿维巴丹治疗的耐碳青霉烯肠杆菌感染患者的增量CPE,PITT菌血症和QPITT评分。Pérez-Nadales E,Gutiérrez-GutiérrezB,Natera AM等。固体器官移植受者死亡率的鉴定因产生碳纤维酶的肠杆菌引起的血流感染:巨细胞病毒疾病和淋巴细胞减少症的影响。9。Harrispa,Taylorr,Thielker,Paynej,Gonzalezn,Condejg.1rearch电子数据捕获(REDCAP) - 元数据驱动的方法和工作流程,用于提供翻译研究信息学支持。j BioMed Inform。2009; 42(2):377-381。 10。 Harris PA,Taylor R,Minor BL等。 REDCAP联盟:建立一个软件平台合作伙伴的国际社会。 j BioMed Inform。 2019; 95:103208。 11。 Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2009; 42(2):377-381。10。Harris PA,Taylor R,Minor BL等。 REDCAP联盟:建立一个软件平台合作伙伴的国际社会。 j BioMed Inform。 2019; 95:103208。 11。 Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。Harris PA,Taylor R,Minor BL等。REDCAP联盟:建立一个软件平台合作伙伴的国际社会。j BioMed Inform。2019; 95:103208。11。Horan TC,Andrus M,Dudeck MA。 CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。 AM J感染控制。 2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。Horan TC,Andrus M,Dudeck MA。CDC/NHSN监视急性护理环境中特定类型感染的卫生保健相关感染和标准的监测限制。AM J感染控制。2008; 36(5):309-332。 12。 al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。 在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2008; 36(5):309-332。12。al-Hasan MN,Juhn YJ,Bang DW,Yang HJ,Baddour LM。在基于人群的队列中对血液感染死亡率评分评分的外部验证。 临床微生物感染。 2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。在基于人群的队列中对血液感染死亡率评分评分的外部验证。临床微生物感染。2014; 20(9):886-891。 13。 Paterson DL,Ko WC,Von Gottberg A等。 肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。 Ann Intern Med。2014; 20(9):886-891。13。Paterson DL,Ko WC,Von Gottberg A等。肺炎克雷伯菌的国际前瞻性研究:扩展谱β-内酰胺酶在医院感染中的影响。Ann Intern Med。Ann Intern Med。2004; 140(1):26-32。 14。 Jones AE,Trzeciak S,Kline JA。 在急诊科呈递时预测严重败血症患者和灌注不良的证据的顺序器官衰竭评估评估评分。 Crit Care Med。 2009; 37(5):1649-1654。 15。 战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2004; 140(1):26-32。14。Jones AE,Trzeciak S,Kline JA。在急诊科呈递时预测严重败血症患者和灌注不良的证据的顺序器官衰竭评估评估评分。Crit Care Med。2009; 37(5):1649-1654。 15。 战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2009; 37(5):1649-1654。15。战斗SE,Augustine MR,Watson CM等。 快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。战斗SE,Augustine MR,Watson CM等。快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。 感染。 2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。快速PITT菌血症评分的推导,以预测革兰氏阴性血液感染患者的死亡率。感染。2019; 47(4):571-578。 16。 Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2019; 47(4):571-578。16。Khwaja A. Kdigo急性肾脏损伤临床实践指南。 nephron Clin实践。 2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。Khwaja A. Kdigo急性肾脏损伤临床实践指南。nephron Clin实践。2012; 120(4):C179-C184。 17。 Girmenia C,Lazzarotto T,Bonifazi F等。 在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。 临床移植。 2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2012; 120(4):C179-C184。17。Girmenia C,Lazzarotto T,Bonifazi F等。在同种异体造血干细胞移植和固体器官移植中的巨细胞病毒感染评估和预防:意大利吉特莫,Sito和Amcli社会的多学科共同会议。临床移植。2019; 33(10):E13666。 18。 Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。 BIOM j。 2005; 47(4):458-472。2019; 33(10):E13666。18。Fluss R,Faraggi D,ReiserB。Youden指数及其相关截止点的估计。BIOM j。 2005; 47(4):458-472。BIOM j。2005; 47(4):458-472。2005; 47(4):458-472。
CPUC 的中期可靠性 (MTR) 决定 (D.21-06-035) 要求采购 11,500 兆瓦 (MW) 的净合格容量 (NQC),并要求标准化有效负荷承载能力 (ELCC) 值。这些标准化值允许负荷服务实体 (LSE) 了解各种增量资源类型的合规值,并使 CPUC 确信增量采购将满足其确定的采购需求。本报告介绍了用于遵守 CPUC 的 MTR 决定的 ELCC 值的更新。2023 年(“第 1 部分”)和 2024 年(“第 2 部分”)合规日期的 ELCC 值已在 2021 年 10 月 CPUC 的一份报告中最终确定。本报告介绍了之前报告的 2025 年(“第 3 部分”)和 2026 年(“第 4 部分”)合规日期的 ELCC 值的更新。此外,本报告根据 2023 年 1 月 13 日提出的综合资源规划 (IRP) 拟议决定,提出了 2027 年 (“第 5 部分”) 和 2028 年 (“第 6 部分”) 的 ELCC 值,该决定提议进行额外的 MTR 采购。该研究还与之前的 ELCC 研究进行了比较,并考虑了 ELCC 不确定性的驱动因素。E3 和 Astrapé 作为 CPUC 的技术顾问,使用 Astrapé 的战略能源和风险评估模型 (SERVM) 随机负荷损失概率 (LOLP) 模型进行了这项研究。
后印本:Jesús S. García-Salinas、Alejandro A. Torres-García、Carlos A. Reyes-Garćia、Luis Villaseñor-Pineda,基于 EEG 的想象语音识别的受试者内类别增量深度学习方法,生物医学信号处理与控制,第 81 卷 (2023),104433,DOI:10.1016/j.bspc.2022.104433
当前的研究着重于增量在副词处理中的作用。以前的实验研究为德国中间领域的副词的基础位置提供了证据。在非基本位置的副词处理会导致更高的处理成本。然而,这些研究也对副作用处理的时间过程产生了不同的结果(Gauza,2018;Störzer,2017; Stolterfoht等,2019)。某些副词类型的运动导致阅读时间立即增加。但是,没有发现所有类型的副词的阅读时间增加。在两个在线阅读时间实验中,我们测试了两个不同的解释,以实现有关时间课程的差异结果。第一个是基于副词的不同配置及其在LF处的修改域的句法解释;第二个是指修改实体的语义类型(即命题,事件或过程)。我们的结果表示支持第二种方法。1
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,避免拉伸和剪切载荷。 操作说明 Pepperl+Fuchs 制造的每个编码器都处于完美状态。为了确保这种质量以及无故障运行,必须考虑以下规范: • 避免对外壳(特别是编码器轴)造成任何冲击,以及避免编码器轴的轴向和径向过载。 • 只有在使用合适的联轴器时,才能保证编码器的精度和使用寿命。 • 编码器和后续设备(例如控制)的工作电压必须同时打开和关闭。 • 任何接线工作都必须在系统处于死区的情况下进行。 • 不得超过最大工作电压。设备必须在超低安全电压下运行。 连接电气屏蔽的注意事项 设备的抗干扰能力取决于正确的屏蔽。在这个领域,安装故障经常发生。通常只在一侧应用屏蔽,然后用导线焊接到接地端子,这是 LF 工程中的有效程序。但是,在 EMC 的情况下,适用 HF 工程规则。HF 工程的一个基本目标是以尽可能低的阻抗将 HF 能量传递到地面,否则能量会释放到电缆中。通过与金属表面的大面积连接可实现低阻抗。必须遵守以下说明:• 如果不存在等电位电流风险,则将两侧的屏蔽层大面积地连接到“公共接地”。• 屏蔽层必须穿过绝缘层后面,并且必须夹在张力释放器下方的大表面上。• 如果电缆连接到螺钉型端子,则张力释放器必须连接到接地表面。• 如果使用插头,则应仅安装金属插头(例如带有金属外壳的 D 型插头)。请注意张力释放器与外壳的直接连接。
ICM 政策的制定是为了解决分销商在价格上限 IR 利率制定计划期间产生的资本投资需求,这些需求是计算出的重要性阈值的增量。ICM 是分销商从客户那里收取额外收入以资助服务成本申请之间的几年内资本支出的一种手段。ICM 适用于可自由支配或不可自由支配的项目,不限于非常或意外的投资。但是,ICM 资金不适用于对分销商运营没有重大影响的项目。与 ICM 类似,ACM 的制定是为了解决分销商在价格上限 IR 年度内的资本需求。根据 ACM 报告,ACM 计划在重新定基年度作为服务成本申请的一部分。ACM 的目的是协助提高监管效率。4
无服务器功能-AS-A-Service(FAAS)为客户提供了改进的性能性,但它并不是服务器“少”,并且以更复杂的基础架构管理(例如,资源提供和调度)的成本为云提供者。为了维持服务级别的目标(SLO)并提高资源利用效率,最近的研究集中在应用在线学习算法(例如加固学习(RL))来管理资源上。尽管最初的应用RL取得了成功,但我们首先在本文中表明,最先进的单代理RL算法(S-RL)在多租户无服务器FAAS平台上遭受高达4.8×较高的P99功能延迟降低,与在培训过程中无法融合。然后,我们基于近端策略选择(SIMPPO)设计并实施一个可扩展和增量的多代理RL框架。我们的实验表明,在多租户环境中,SIMPPO使每种RL代理在训练过程中有效收敛,并提供在线功能延迟性能,可与S-RL的S-RL隔离培训相当(少量降解(<9.2%))。在多租户情况下,与S-RL相比,SIMPPO将P99功能延迟降低了4.5×。
近年来,无人驾驶飞行器 (UAV) 已广泛应用于民用和军事用途,例如交通监控、配送任务和地理测量。它们可以替代暴露于重复任务或危险环境中的载人飞机,从而降低运营成本 [1, 2]。根据任务环境,无人机可能需要通过干扰进行鲁棒控制。此外,根据无人机的形式,它可能被设计为非线性、高度耦合、不确定、时变的系统。典型的控制方法已经变得难以满足系统的良好性能。因此,提出了一种通过微分陀螺仪中测量的角速度来利用角加速度进行飞行控制的控制方法 [3]。战斗机VAAC采用角加速度控制概念提出后,通过反馈角加速度可以提高系统的鲁棒性,如增量非线性动态逆(INDI)[4, 5]、带噪声的角加速度滤波器[6]。将角加速度反馈应用于控制系统有三个主要优点。
近年来,无人驾驶飞行器 (UAV) 已广泛应用于民用和军事用途,例如交通监控、配送任务和地理测量。它们可以替代暴露于重复任务或危险环境中的载人飞机,从而降低运营成本 [1, 2]。根据任务环境,无人机可能需要通过干扰进行鲁棒控制。此外,根据无人机的形式,它可能被设计为非线性、高度耦合、不确定、时变的系统。典型的控制方法已经变得难以满足系统的良好性能。因此,提出了一种通过微分陀螺仪中测量的角速度来利用角加速度进行飞行控制的控制方法 [3]。战斗机VAAC采用角加速度控制概念提出后,通过反馈角加速度可以提高系统的鲁棒性,如增量非线性动态逆(INDI)[4, 5]、带噪声的角加速度滤波器[6]。将角加速度反馈应用于控制系统有三个主要优点。