本测试方法是评估建筑构件隔音性能和空间间隔音性能的一套标准的一部分。它旨在使用标准敲击机在现场测量房间之间的撞击声隔离,或估算通过安装在建筑物内部的楼板-天花板隔断构件的撞击声传输的下限。该套件中的其他内容包括在受控实验室环境中测量通过隔离楼板-天花板组件的撞击声传输(测试方法 E492 ),在受控实验室环境中测量隔离隔断构件的空气声传输损失(测试方法 E90 ),在现场测量与建筑构件相关的空气声隔离和空气声传输损失(测试方法 E336 ),在现场测量通过建筑物立面和立面构件的声音传输(指南 E966 );并在受控实验室环境中测量两个房间之间通过公共静压室的声音传输(测试方法 E1414)。
3.1 简介 ---------------------------------------------------------------------------------- 6 3.2 声音传输的基本原理 ------------------------------------------------------------------ 6 3.3 测量方法 ---------------------------------------------------------------------------------- 9 3.3.1 单一数值评级 ----------------------------------------------------------------------------------10 3.4.2 频谱适应术语 ----------------------------------------------------------------------------------10 3.3.3 频率范围 ----------------------------------------------------------------------------------10 3.4 冷成型钢结构的声学特性 ------------------------------------------------------------------10 3.4.1 分隔墙 --------------------------------------------------------------------------------------------------12 3.4.2 分隔地板 --------------------------------------------------------------------------------------------------13 3.4.3 撞击声传输 --------------------------------------------------------------------------------------------------14
短短几年的时间。当老 IBA 在 80 年代初期构想出多路复用模拟组件的概念时,它看起来就像一个聪明的主意,它利用当时的技术克服了地面电视系统的缺点:没有格子运动夹克的交叉色差。多语言/立体声传输,并可与其他广播标准轻松互换。最棒的是。视频信号上的色域压缩允许在正常电视频道带宽内进行广播。甚至还有 loofa 来挤入数字声音和文本。不幸的是,它虽然很好。80 年代的技术尚未被取代,所有标准核心的模拟压缩看起来仍然僵硬且不灵活。任何普遍实施的广播系统都必须基于全数字编码,以便为未来发展做好准备。毕竟,可以将标准彩色电视频道压缩为 I/H/I/ 的算法。传输空间已经存在(GI 的 Digicypher),甚至更惊人的处理卷积正在酝酿中。全数字系统符合低成本制造技术,但考虑到微电子和未来传输技术的未来发展。这几乎就像我们在 30 年代被黑客攻击,即将选择 Baird 机械电视系统而不是 EMI 的电子扫描方法。仅仅说数字系统尚未准备好是不够的。一切都是如此。99% 的观众对屏幕上显示的技术质量非常满意。欧盟委员会准备让广播制造业和观众背负技术负担,以换取电视公司的短期利益,这是相当可耻的。弗兰克·奥格登
主要领域:机械与航空航天工程 摘要:近年来,UAS(无人机系统)通过集成先进的摄像机、传感器和硬件系统获得了改进的功能;然而,UAS 仍然缺乏检测和记录音频信号的有效手段。这部分是由于硬件的物理规模和硬件集成到 UAS 中的复杂性。当前的研究是将高增益抛物面麦克风集成到 UAV(无人机)中用于声学勘测的更大规模研究工作的一部分。由于嵌入式抛物面天线与自由流掠流之间的气动相互作用,需要使用挡风玻璃将天线整平到飞机上。当前的研究开发了一种表征方法,通过该方法可以优化各种挡风玻璃的设计和配置。该方法测量候选挡风玻璃的法向入射声传输损耗 (STL) 以及其在一系列流速下安装时产生的流体动力噪声的增加。在俄克拉荷马州立大学的低速风洞上设计并安装了测试装置。测试设备使用附在风洞测试段地板上的“静音箱”。风洞测试段和静音箱之间的直通窗口允许在两个环境之间安装候选挡风玻璃。安装在风洞测试段和静音箱内的麦克风记录各种流速下的声谱,范围在每秒 36 至 81 英尺之间。制造了一个张紧的 Kevlar® 挡风玻璃验证样本来验证系统性能。STL 频谱是通过比较 Kevlar® 膜两侧麦克风的信号来测量的。将流离场景的法向入射 STL 结果与其他研究中对相同材料在张紧状态下的结果进行比较。在几种流速下还测量了流入传输损耗频谱数据以及膜引起的流动噪声的增加。该系统已被证明可以产生与流入和流离测试配置的参考数据一致的 STL 数据,并且能够检测到验证样本挡风玻璃产生的流动诱导噪声的增加。