摘要 - 大米是印尼人口的主食之一,在国内生产总值(GDP)的形成中起着重要作用。但是,由于许多害虫攻击并导致农作物衰竭,其中之一是麻雀害虫。因此,使用超声声音进行了一项研究,以干扰害虫,以免降落并离开稻米植物。当鸟儿靠近并打破散布在大米植物上的激光束的电子网时,发出了超声声音。该原型是使用Nodemcu ESP32微控制器作为控制器和系统构建的。和Telegram用作辅助应用程序,以发出/关闭命令和电池百分比探测器,以促进使用。根据这项研究,原型的功能正常,并且被超声声音打扰,频率为0-22,000 Hz,声压水平在31.6-93.2分贝之间。关键字:ESP32,激光,大米,麻雀,超声波。
分贝量表具有对数,可以适应环境中发现的广泛的声音强度。分贝量表的属性是两个或多个单独声音的声压水平不是直接添加剂。例如,如果将50 dB的声音添加到另一个50 dB的声音中,则总数仅增加3个贝贝尔(53 dB),这等于声音能量增加一倍,但不等于分贝数量的两倍(100 dB)。因此,声音级别的每3 dB变化都代表声音能量的加倍或减半。人耳没有感知声音水平的变化,因为响度均等变化。科学研究表明,以下两个声音水平的声音水平和人类感知之间存在以下一般关系,具有相同或非常相似的频率特征1:
l天是ISO 1996-2中定义的A加权长期平均声音水平,在一年中的所有一天中确定。12小时的白天期间为07:00至19:00小时。l晚上是ISO 1996-2中定义的A加权长期的平均声音水平,在一年的所有晚上确定。4小时的傍晚时期在19:00至23:00小时之间。l Night是ISO 1996-2定义的A加权长期平均声音水平,在一年的所有夜晚确定。8小时的夜间时间在23:00至07:00小时之间。2.6调查程序噪声测量是根据ISO 1996中包含的指南进行的:声学 - 描述测量和评估以及环境噪声。第1部分:基本数量和评估程序(2016年)和第2部分:确定声压水平(2017)。
第2级 - 第90-1042(g)(5)节在电池能量存储系统,组件和相关辅助设备中产生的平均噪声不得超过在外墙上测量的噪声水平为20 dBA的噪声水平,该噪声水平在外墙的属性线上均不超过任何周围的非参与式住宅或R-A和Zoning区中占领的社区建筑物的属性线。在M分区区域中,在相邻的财产线上,平均噪声不得超过60 dBA的噪声水平。申请人可以提交设备和组件制造商的噪声评级以证明合规性。可能需要申请人从合理数量的电池储能系统周长中提供合理数量的采样位置来提供操作的声压水平测量,以证明符合此标准。退役和保证
This work presents an air-coupled piezoelectric micromachined ultrasonic transducer (pMUT) with high transmitting acoustic pressure by using sputtered potassium sodium niobate (K,Na)NbO 3 (KNN) thin film with a high piezoelectric coefficient (e 31 ~ 8-10 C/m 2 ) and low dielectric constant ( r ~ 260-300) for the first time.已经测试了以104.5 kHz为谐振频率的制造的KNN PMUT,已测试以表现出前所未有的结果:(1)在10 cm的距离为109 db/v的高声压水平(SPL)为10 cm,比基于ALN的PMUT的频率高8倍; (2)仅4伏峰峰幅度的低压操作(V P-P); (3)良好接收灵敏度。因此,这项工作介绍了一类新的高SPL和低驾驶电压PMUT,用于在包括但不限于触觉反馈,扬声器和AR/VR系统在内的各个领域的潜在应用中。关键字
已启动一项任务,以开发一种允许常规和参数波束形成的声纳系统传感器。可用的空间约束和所需的声功率密度要求从同一换能器阵列生成常规和参数信号。报告了大量研究,记录了为确定最佳参数主频率而进行的模拟和实验。开发了一种双模换能器来生成常规和参数信号。该换能器能够在两个相距近 2.5 个八度的独立频率上进行高功率传输,并且在两个频率上都具有宽带宽。低频换能器是传统的 Tonpliz,其头部质量由多个节点安装的高频换能器组成,这些换能器可生成参数信号。高频换能器的节点板允许低频换能器将声能传输到介质,而不会横穿高频换能器的声压释放。数据显示了这些换能器的一小部分阵列的性能。
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些高频纵向机械振动被探头(喇叭)放大,并以交替的膨胀和压缩声压波的形式传输到液体中。压力波动导致液体分子内聚力分解,将液体拉开并产生数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段剧烈内爆。随着气泡破裂,内爆点会产生数百万个微观冲击波、微喷射流、涡流和极端压力和温度,并传播到周围介质。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但内爆空腔产生的累积能量极高,是超声波槽中产生能量的许多倍。
检查对于防止混凝土剥落和保持隧道的音质很重要。将视觉检查和锤击测试结合的人类检查具有可靠的记录,被认为是可靠的。然而,人类检查是耗时的,结果取决于检查员。振动测量结果对于铁路隧道的未固定混凝土段中缺陷的区域获得的结果表明,有许多缺陷被高估了剥落的风险。这项研究的目的是阐明这种高估的原因。准备了带有倾斜脱离的混凝土标本,并研究了脱离的锤击声音的变化。进行了数值分析以补充实验结果。结果表明,缺陷的低频振动不太可能被空气作为声压传输。此外,考虑到人类的听觉特征,低频声音相对较难听到。因此,低频振动可能不会影响锤击声。尽管可以通过锤击声音来区分缺陷,但不能仅凭声音准确地评估剥落风险,这是人类检查员高估风险的主要原因之一。
流量控制在于修改自然状态,以使另一个被认为是有利的状态收敛,因为可能会减少阻力或噪声辐射。在本文中,在亚音速开腔流中进行开放环路控制实验。在不稳定的流量控制的情况下,将控制焦点带入了流量的弹性修改,而不是对平均流属性的修改。因此,使用任意信号和强迫线性的强迫范围对于这种流量控制案例至关重要。从这个意义上讲,已经实施了微磁电机机电系统的线性阵列,以在开放式腔内执行开通环路控制实验。执行器能够以线性行为同时生成准稳态和脉冲喷射。我们证明了微欧洲的效率降低了腔振荡。准稳态喷气机在空腔基本振幅声压水平中降低了20 dB。脉冲喷气机启用了额外的空腔音调幅度降低,这取决于脉动频率和强迫振幅。这些结果是朝着实施开放式流量的闭环控制的第一步。
图 28:排放侧 2D 发生频率(调制频率与风力涡轮机转速)......................................................................................... 59 图 29:调制深度与输出辐射(SA 2 顶部,SA 4 底部)........................................ 64 图 30 按风向和输出分类的频率分布 Δ L AM,SA 1 至 SA 4 ............................................................................................. 65 图 31 按风向和风速分类的频率分布 Δ L AM,SA 5 ............................................................................................................. 66 图 32:SA 1 中排放范围内的调制深度与剪切参数......................................................................................................... 67 图 33:SA 2 中辐射范围内的调制深度与剪切参数......................................................................................................... 68 图 34:有风力涡轮机的高速公路沿线 10 Hz 噪声曲线比较......................................................................................................... 69 图 35:AM 方法与最大周期性噪声级方法的比较(SA 2)............................................................................................. 70 图 36:AM 方法与最大周期性噪声级方法的比较(SA 4)............................................................................................. 71 图 37:AM 方法与最大周期性噪声级方法的比较(SA 5)......................................................................................... 71 图 38:接地板上的次声麦克风 ............................................................................. 73 图 39:带有单独线条的声压谱 ............................................................................. 74 图 40:带有单独线条的声压谱,放大 ............................................................. 75 图 41:随时间变化的声压级曲线 ............................................................................. 78 图 42:SA 5 中 G 加权级的频率分布 ............................................................. 79 图 43:SA 5 中 3 Hz 以内的频带级的频率分布 ............................................................. 80 图 44:SA 5 中 4 至 7 Hz 以内的频带级的频率分布 ............................................................. 80 81 图 46: SA 5 中 25 至 80 Hz 频带的声级频率分布 .............................................. 81 图 47: SA 5 中 A 加权声级的频率分布 .............................................................. 83 图 48: SA 5 中 125 Hz 频带的声级频率分布 ............................................................. 84 图 49: SA 5 中可听声音范围内的三分之一倍频程频谱 ............................................................. 85 图 50:可听声音与次声的声级 ............................................................................. 86 图 51:接地板测量和三脚架测量 ............................................................................................................................................. 87 图 52:不同风速下差异频谱(三脚架-接地板)的 80% 百分位数 ............................................................................................. 88 图 53:低负载、中负载和大负载测得的三分之一倍频程频谱,SA 5 ............................................................................................. 92 图 54:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 1 ............................................................................. 93 图 55:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 2 ............................................................................. 94