摘要:近年来,二维磁性材料 (2DMM) 已成为二维材料领域的一个研究热点,因为它们在基础研究以及未来自旋电子学、磁子学、量子信息和数据存储等技术相关应用中具有重要意义。2DMM 丰富的工具箱及其多样化的可调谐性使得对二维磁序的研究达到了前所未有的水平,研究范围深入到单原子层材料,远远超出了经典的薄膜磁性,为电子学、磁光学和光子学提供了一条极具前景的途径。在各种自由度中,自旋和声子 (即晶格振动的量子) 之间的相互作用,即所谓的自旋-声子耦合,是探索二维磁性的重要调谐旋钮,创造了新型准粒子并控制磁序。本综述概述了 2DMM 中自旋-声子耦合研究的最新进展。讨论了利用自旋-声子耦合研究二维磁性的各种技术。本文还总结了基于自旋-声子耦合调节二维磁序的最新进展,重点介绍了新功能。此外,本文还简要讨论了基于自旋-声子耦合的器件开发和概念。本综述将为我们介绍二维磁体及其功能器件中自旋-声子耦合研究的现有挑战和未来方向。
摘要:钻石中氮呈(NV)中心的电荷状态是下一代量子传感,通信和计算的先决条件。在这里,我们使用声子辅助的反stokes激发来实现NV 0和NV-状态之间的可逆转换。在这种情况下,我们观察到具有寿命长达数十秒钟的NV-中心的两个衰减过程。通过研究NV-状态的光谱结构演化的动力学,我们发现NV-中心的光谱结构是通过反stokes激发的电荷状态过渡过程调节的。我们提出的主要原因是由NV-的电离产生的局部电场,它改变了颜色中心的辐射环境。我们的结果可能提供了一种控制氮 - 视牙中心的电荷状态的替代方法。关键字:钻石,电荷状态控制,声子辅助上转换,量子光学■简介
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。
图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心
In addition to the general affairs office, which is responsible for the administrative department of forensics, Crime Forensics Office, there are a wide range of business fields, including the DNA center, fingerprint center, and document center, which are in charge of the current department, so it is a gathering of staff with a variety of backgrounds, including staff with highly specialized skills in each field, police officers and appraisers who are seconded to the prefectural police.您不仅可以谈论工作,而且还可以轻松地聊天而不与年龄或背景区分,所以我觉得这是一个非常容易的工作场所。
本文档是公认的手稿版本的已发表作品,该作品以Nano Letters的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.nanolett.2C03427。
在芯片上分配量子纠缠是实现可扩展量子处理器的关键步骤。使用旅行的声子(量化的引导机械波包包)作为传输量子状态的介质,由于与其他载流子(例如电子或光子)相比,由于其尺寸较小,而且传播速度较低,因此现在引起了很大的关注。此外,声子是在芯片上连接异质量子系统的高度有希望的候选者,例如微波炉和光光子通过光纤长距离传输量子。在这里,我们通过实验表明,通过实现两个行进的声子之间的量子纠缠并创建一个时间键 - 编码的传播声音量子量子,可以证明使用声子分发量子信息的可行性。机械量子状态是在光力学腔中生成的,然后发射到声音波导中,在该波导中传播约200微米。我们进一步展示了语音量如何与光子量子量子合作违反铃铛型不平等。
图 2. 声子介导的量子态转移和过程层析成像。a 测量的 Q 1 激发态群体 PQ 1 e 与时间和 Q 1 裸频率的关系,耦合器 G 1 处于中间耦合 κ 1 / 2 π = 2.4 MHz(在 3.976 GHz 处测量),G 2 设置为零耦合。在这种配置中,Q 1 的能量弛豫主要由通过 UDT 1 的声子发射主导,其次是行进声子动力学。白色和红色虚线分别表示单向和双向工作频率(见正文);插图显示量子位激发和测量脉冲序列。b 通过行进声子在单向(左)和双向(右)工作频率下进行量子态转移。与单向传输相比,双向传输的 Q 2 的最终群体要小 4.5 倍,这与模拟结果一致。绿色实线来自主方程模拟。插图:脉冲序列。对于任一过程,Q 1 的发射率均设为 κ uni | bi c / 2 π = 10 | 6 MHz,对应于 81 | 138 ns 的半峰全宽 (FWHM) 声子波包。c 单向和双向区域的量子过程层析成像,过程保真度分别为 F uni = Tr ( χ exp · χ ideal ) = 82 ± 0 . 3 % 和 F bi = 39 ± 0 . 3 %。红色实线显示理想传输的预期值;黑色虚线显示主方程模拟,其中考虑了有限量子比特相干性和声子通道损耗。不确定性是相对于平均值的标准偏差。
