西里尔·M·哈里斯 (Cyril M. Harris) 是世界冲击、振动和噪声控制领域的顶尖权威之一,目前在哥伦比亚大学任教,担任该校电气工程名誉查尔斯·巴彻勒教授。哈里斯博士因其科学和工程成就获得了许多荣誉,包括美国国家科学院和美国国家工程院院士。他曾获得美国声学学会金质奖章和萨宾奖章、富兰克林研究所富兰克林奖章、音频工程学会金质奖章和美国建筑师学会 AIA 奖章。他拥有麻省理工学院物理学博士学位,并获得西北大学和新泽西理工学院的荣誉博士学位。哈里斯博士撰写或编辑的书籍包括以下 McGraw-Hill 出版物:《声学测量和噪声控制手册》第三版 (1991 年);建筑噪声控制(1994 年);建筑词典,第三版(2000 年);以及建筑公用设施和服务手册(1990 年)。
西里尔·M·哈里斯 (Cyril M. Harris) 是世界冲击、振动和噪声控制领域的顶尖权威之一,目前在哥伦比亚大学任教,担任该校电气工程名誉查尔斯·巴彻勒教授。哈里斯博士因其科学和工程成就获得了许多荣誉,包括美国国家科学院和美国国家工程院院士。他曾获得美国声学学会金质奖章和萨宾奖章、富兰克林研究所富兰克林奖章、音频工程学会金质奖章和美国建筑师学会 AIA 奖章。他拥有麻省理工学院物理学博士学位,并获得西北大学和新泽西理工学院的荣誉博士学位。哈里斯博士撰写或编辑的书籍包括以下 McGraw-Hill 出版物:《声学测量和噪声控制手册》第三版 (1991 年);建筑噪声控制(1994 年);建筑词典,第三版(2000 年);以及建筑公用设施和服务手册(1990 年)。
目前,确定声学参数的方法必须遵守当前标准、需要必要的培训、包括高昂的设备成本并且耗时。通过计算估算声学可以减少声学测量中的一些问题,但准确性可能较低 1 。尽管 RT60 作为一个有影响力的声学参数非常重要 2 ,但对于声学领域的个人和企业来说,考虑它可能会很困难,这可以说是无法假设的,尤其是在教育领域 3,4 。人工智能 (AI) 是一种能够执行通常需要人类智能的任务的程序(见第 2.2 节),并且已经达到成熟度,现在可以应用于以前在行业内不可行的实际任务 5 。人工智能可能会降低成本,因为它们可以减少完成任务所需的时间并减少所需的资源数量 6 。人工智能需要数据,并且在大多数情况下,数据采集(例如图像 7 、视频 8 或文本 9 )只需发生一次,然后可以允许包括图像识别 7 在内的一系列应用。作为概念证明,该项目旨在研究是否有可能创建一种使用 AI 确定 RT60 的替代方法。
本论文研究了使用相控麦克风阵列检测飞机和风力涡轮机上的气动声源。推导并总结了飞机机翼和风力涡轮机叶片的流动诱导声音的特性。详细描述了相控阵技术,并讨论了该方法的几个方面,例如如何考虑流动和移动源的影响,以及如何使用源功率积分法量化阵列结果。使用开放式和封闭式风洞中的机身噪声测量来评估积分方法的可靠性。结果表明,尽管由于相干性损失,开放式喷气机中的绝对声级可能太低,但两个测试部分的相对声级在 1 dB 以内都是准确的。因此,相控阵可以在封闭式风洞中进行定量气动声学测量。接下来,应用阵列技术来表征两台现代大型风力涡轮机上的噪声源。结果表明,几乎所有发射到地面的噪声都是由叶片向下运动时叶片的外部产生的。这种不对称的声源模式会导致叶片通过时产生典型的嗖嗖噪音,这可以通过尾缘噪音指向性和对流放大来解释。测试结果令人信服地表明,宽带尾缘噪音是两种涡轮机的主要声源。基于此信息,半经验预测符合
使命:为海军舰船、舰船系统和相关海军后勤系统提供全方位的研究和开发、测试和评估、分析、采购和舰队支持。具体重点是提供整合水面和水下车辆及相关系统所需的核心技术能力,开发和应用与船舶建筑和海洋工程相关的科学技术,并为海事行业提供支持。愿景:成为海军值得信赖的合作伙伴,为先进舰船和舰船系统确定和提供世界一流、创新且经济高效的解决方案,为作战人员提供技术解决方案,并让我们的舰队保持海上航行。 NSWC 卡德罗克分部在美国包括以下设施:x 卡德罗克分部总部(马里兰州西贝塞斯达)x 战斗舰艇分部(弗吉尼亚州诺福克)x 普吉特湾支队(华盛顿州西尔弗代尔)x 声学研究支队(爱达荷州湾景)x 声学试验支队(佛罗里达州卡纳维拉尔角)x 南佛罗里达海洋测量设施(佛罗里达州劳德代尔堡)x 威廉 B. 摩根大型空化通道(田纳西州孟菲斯)x 东南阿拉斯加声学测量设施(阿拉斯加州凯奇坎)
本论文提出了一种用于平台导航的和积推理算法,称为多模态 iSAM(增量平滑和映射)。常见的仅高斯似然性具有限制性,需要复杂的前端流程来处理非高斯测量。相反,我们的方法允许前端推迟使用非高斯测量模型的歧义。我们保留了前身 iSAM2 最大乘积算法 [Kaess et al., IJRR 2012] 的非循环贝叶斯树(和增量更新策略)。该方法在贝叶斯(连接)树上传播连续信念,这是非参数因子图的有效符号重构,并渐近近似底层 Chapman-Kolmogorov 方程。我们的方法以最小的近似误差跟踪所有变量边际后验中的主导模式,同时抑制几乎所有低似然模式(以非永久方式)。遵循现有的惯性导航,我们提出了一种新颖的、连续时间的、可追溯校准的惯性里程计残差函数,使用预积分将纯惯性传感器测量无缝地整合到因子图中。我们以因子图为中心(使用饥饿图数据库),将导航元素分离成一个流程生态系统。其中包括实际示例,例如如何推断模糊环路闭合的多模态边际后验信念估计;原始波束形成声学测量;或传统参数似然等。
本论文提出了一种用于平台导航的和积推理算法,称为多模态 iSAM(增量平滑和映射)。常见的仅高斯似然具有限制性,需要复杂的前端流程来处理非高斯测量。相反,我们的方法允许前端推迟使用非高斯测量模型的歧义。我们保留了前身 iSAM2 最大乘积算法 [Kaess et al., IJRR 2012] 的非循环贝叶斯树(和增量更新策略)。该方法在贝叶斯(连接)树上传播连续信念,这是非参数因子图的有效符号重构,并渐近地近似底层 Chapman-Kolmogorov 方程。我们的方法以最小的近似误差跟踪所有变量边际后验中的主导模式,同时抑制几乎所有低似然模式(以非永久方式)。与现有的惯性导航保持一致,我们提出了一种新颖的、连续时间的、可追溯校准的惯性里程计残差函数,使用预积分将纯惯性传感器测量无缝地合并到因子图中。我们围绕因子图(使用饥饿图数据库)集中将导航元素分离成一个流程生态系统。其中包括实际示例,例如如何推断模糊环路闭合的多模态边际后验信念估计;原始波束形成声学测量;或常规参数似然等。
1986 年 10 月 14 日至 11 月,芝加哥号在巴哈马群岛附近的埃克苏马海峡靶场进行声学试验。1986 年 11 月 17 日至 12 月 20 日,芝加哥号在波多黎各作战区进行武器系统验收试验,在关塔那摩湾作战区参加反潜战演习。11 月 18 日至 22 日、27 日至 31 日,芝加哥号在南加州作战区进行反潜战 (ASW) 作战。1990 年 1 月 5 日至 2 月 28 日,芝加哥号在夏威夷作战区进行未来指挥官 (PCO) 作战。1990 年 6 月 22 日,在英属哥伦比亚附近的纳诺斯试验场进行测试后,芝加哥号抵达埃斯奎莫尔特海军基地,对加拿大维多利亚进行为期两天的访问。1990 年 11 月 13 日,芝加哥号抵达日本横须贺进行为期五天的保养。 1991 年 2 月 3 日进入红海,支援沙漠风暴行动。1992 年 5 月 6 日,芝加哥号抵达澳大利亚布里斯班,进行为期四天的港口访问,以纪念珊瑚海战役 50 周年。1992 年 11 月 16 日,芝加哥号离开母港,参加南加州海岸的 COMTUEX 93-2T。1995 年 2 月 14 日,芝加哥号离开母港,与亚伯拉罕·林肯号 (CVN 72) BG 一起参加南加州海岸的 FLEETEX。1995 年 3 月 6 日至 21 日,芝加哥号在阿拉斯加凯奇坎附近的贝姆运河的东南阿拉斯加声学测量设施 (SEAFAC) 进行声学试验。
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪音的相位反转 180 度并将此反转信号添加到原始噪音中来降低背景噪音的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪声的相位反转 180 度并将此反转信号添加到原始噪声中来降低背景噪声的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]