弹性体在声学应用方面有着悠久的历史。这种用途包括阻止声音通过的解耦器、衰减声音反射的消声涂层和传输声波的声学窗。橡胶成为水下声学的首选材料有几个原因。其中最重要的一个是橡胶的声阻抗可以与海水的声阻抗相匹配。在边界上,如果两种介质的声阻抗相等,则不会反射声波。1 声阻抗类似于光学折射率,由材料的质量密度和材料内部声音速度的乘积给出。对于低损耗材料,后者的量与密度和模量(纵波的体积模量或剪切波的剪切模量)之比的平方根成正比。显然,通过聚合物选择和化合物配方,可以在很宽的范围内改变橡胶的声阻抗及其频率依赖性。大多数商业材料都是专有的,尽管声学特性数据汇编是可用的。2 对于填充橡胶,机械响应是强烈非线性的。3 然而,在低于约 10 -3 应变幅度时,动态模量变得不随应变而变化(需要更高的应变才能观察到佩恩效应)。4 由于声波通过橡胶传播引起的变形非常小(通常应变幅度≤10 -6),因此可以通过传统的小应变动态机械测量来表征声学特性。5
由于传感器特性变化导致训练阶段的运行时域偏移会导致基于深度学习的传感系统性能下降。为了解决这个问题,现有的迁移学习技术需要大量的目标域数据,并会产生高昂的部署后开销。与此不同,我们建议利用控制域偏移的第一原理来减少对目标域数据的需求。具体来说,我们提出的方法 PhyAug 使用第一原理,结合源传感器和目标传感器收集的少量标记或未标记数据对,将现有的源域训练数据转换为增强的目标域数据,以校准深度神经网络。在关键词识别和自动语音识别这两个音频传感案例研究中,PhyAug 使用从目标麦克风收集的 5 秒未标记数据将麦克风特性变化导致的识别准确度损失恢复了 37% 至 72%。在基于声学的房间识别案例研究中,PhyAug 将智能手机麦克风变化导致的识别准确度损失恢复了 33% 至 80%。在最后一个鱼眼图像识别案例研究中,PhyAug 将由于相机引起的扭曲而导致的图像识别错误减少了 72%。
摘要。背景意识和场景理解是计算机辅助和机器人手术中智能系统开发的组成部分。尽管大多数系统主要利用视觉数据进行场景理解,但最新的概念证明已展示了声学的大量,用于检测和分析与典型的噪声排放相关的手术活动。但是,尚未有效地用于手术中的定位任务,这对于获得对场景的全面理解至关重要。在这项工作中,我们介绍了可以揭示声学活动及其在手术领域的位置的新型声源定位概念(SSL),因此提供了对患者和医疗设备的外科手术人员的相互作用的见解。我们通过在两个概念验证本地化任务中使用声学摄像头解释声音活动热图,表明了这一概念的潜力。对于对象检测任务,我们以86.07%的0.5 IOU实现AP,平均欧几里得距离为13。70±14。65个PX在图像分辨率为1100x825 PX的图像分辨率,用于关键点检测任务。基于这些结果,我们认为声学事件的本地化具有外科手术理解的巨大潜力,为未来手术室中的多模式感应解决方案打开了许多新的研究方向。据作者的最佳知识,这是在医学背景下利用SSL的第一项作品。
摘要小型自动录制器的增殖使您比以往任何时候都更容易采样陆地声学动物和音景。i进行了四个小录音机的比较,以评估其在现场的表现:野生动植物声学歌曲表mini;野生动物声学歌曲仪表微观;开放声学的声音;和康奈尔·斯威夫恩(Cornell Swiftone)。i解决了两个问题:(1)如何使用这些小的自动录制器比较基于录音机的点计数?(2)录音的质量如何比较这些小型自主录音机?为了评估录音机的性能,我在十个位置进行了面对面和基于记录的点计数。在点计数上,每个录音机的表现都相似地表现出色,从而产生了物种丰富度的COM寓言估计,尽管所有自主录音机都低估了物种丰富度。为了评估记录质量,我进行了声音传输测试,广播和录音声音。记录器的频率响应在12 kHz以上有所不同,但在12 kHz以下的频率下仅显示出频率响应的细微差异。我得出的结论是,这些类型的小记录器中的每一种都为有用的工具提供了用于进行点数计数的有用工具,以及用于对动物声音的被动监测,在研究的模型中只有细微的差异。
2002 博士,心理学(脑、行为与认知科学),皇后大学 1995 硕士,心理学,皇后大学 1992 文学士,心理学专业荣誉学位,约克大学 奖项和荣誉: 2024 多伦多都市大学开放获取名人堂 2022 加拿大脑、行为与认知科学学会院士 2021 加拿大脑、行为与认知科学学会服务奖 2020 多伦多大都会大学合作研究与创造性活动奖 2019 多伦多大都会大学艺术学院院长教学奖 2019-24 NSERC-Sonova 听觉认知神经科学高级工业研究主席 2016 多伦多大都会大学正教授 2016 国际声学委员会早期职业奖和奖章(“对心理声学的杰出贡献”) 2013-19 聆听音乐和情感言语世界研究主席 2013 当选为加拿大心理学会院士 2012 多伦多大学梅西学院高级研究员 2012 加拿大大脑、行为和认知科学学会早期职业奖(“杰出贡献奖”) 2012 多伦多大都会大学学术、研究和创造性活动奖(“杰出成就和影响奖”)(2007、08、10 年也曾获此殊荣) 2011 国际纺织服装协会力克创新奖(“可穿戴技术的研究创新奖”) 2011 安大略省研究和创新部早期研究员奖(“吸引和留住最优秀、最聪明的研究人才”) 2010 多伦多大都会大学压力、健康和幸福研究所创始成员 2009 多伦多大都会大学早期任职奖 2002 加拿大声学协会 Shaw 声学博士后奖
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。
癌症的进展受到癌细胞和免疫细胞之间的串扰的强烈影响。免疫细胞可以根据环境中存在的信号具有促肿瘤和抗肿瘤功能。大多数实体瘤的免疫区室的很大一部分由肿瘤相关的巨噬细胞组成。尽管它们的丰度与许多实体瘤类型的预后不良有关,但癌细胞影响巨噬细胞表型和功能的分子机制在很大程度上是未知的。在本章中,我们提供了研究癌细胞对巨噬细胞影响的体外测定的详细描述。我们提供了从鼠骨髓和人类外周血获得巨噬细胞的方案,并使用来自癌细胞的条件培养基将这些巨噬细胞暴露于癌细胞衍生的分泌分子中。我们描述了评估癌细胞诱导的巨噬细胞极化的几种测定。该实验设置可用于获得分子见解,以了解癌细胞如何影响巨噬细胞。