多学科技术。mi模态可以大致分为三组:经典的解剖成像方式(例如磁共振成像(MRI),X射线计算机断层扫描(CT),超声成像(USI)等。],光学分子成像(OMI)方式(例如生物发光成像,荧光成像,光声成像等。)和核医学成像方式[例如正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)](6,7)。经典的解剖成像方式在设备开发,图像处理和分析以及生物学和医学应用方面具有最长的历史。大量文献回顾了MI领域这些方式的进步(8-11)。因此,本文的内容主要关注OMI和核医学成像技术。
近年来,人们对使用金属纳米结构来控制纳米级的温度越来越感兴趣。在其等离子共振下照明下,金属纳米颗粒具有增强的光吸收,将其变成理想的纳米源热源,可通过光远程控制。这个简单的方案是基于纳米科学社区中众多积极的研究活动和应用。在这里,我们回顾了这种热量等法的所谓领域的最新进展。我们首先描述了在连续或脉冲照明下的金属纳米颗粒中热产生的物理学。然后,我们提出了已经开发出来的实验和理论方法,这些方法是为了进一步理解和设计纳米级的等离子辅助加热过程。最后,我们回顾了一些基于金纳米颗粒产生的热量,即光热癌疗法,纳米疗法,药物输送,光热成像,蛋白质跟踪,光声成像,纳米化学化学和光化合物。
摘要:鼻咽癌是全球范围内发病率较高的头颈部恶性肿瘤,尤其在我国南方地区发病率较高。纳米粒子与光诊疗技术是实现鼻咽癌同步诊断、实时监测和精准治疗的综合策略,以其独特的无创优势在肿瘤诊疗领域展现出巨大潜力。国内外许多研究团队将纳米靶向药物应用于光学诊疗技术,对鼻咽癌进行多模态成像和协同治疗,成为研究热点。本文旨在介绍基于纳米平台的鼻咽癌光诊疗技术的最新进展,阐述基于纳米平台的光学成像策略和治疗方式的应用,包括荧光成像、光声成像、拉曼光谱成像、光动力治疗和光热治疗,以期为鼻咽癌诊疗的进一步研究和发展提供科学依据。关键词:鼻咽癌,光学成像,光疗,纳米粒子
摘要 目前,人们普遍认为使用多功能纳米药物进行图像引导药物输送是一种有效治疗癌症和其他疾病的方法。在本研究中,我们评估了载有吲哚菁绿 (ICG) 和紫杉醇 (PTX) 的人血清白蛋白 (HSA) 纳米粒子与透明质酸结合用于针对 CD44 阳性非小细胞肺癌 (NSCLC) 的图像引导药物输送的潜力。使用蛋白质印迹分析和 qRT-PCR 评估了一系列 NSCLC 细胞系的 CD44 表达,并与正常肺成纤维细胞系 (MRC-5) 进行了比较。使用荧光显微镜和光声成像 (PA),我们探索了这些靶向纳米粒子与 MRC-5 相比选择性地在 NSCLC 细胞系中积累的能力以及它们在生物医学成像方面用于治疗诊断应用的潜力。结果表明这些靶向纳米粒子在 NSCLC 的成像和治疗方面具有应用潜力。
基于铁的纳米材料(INM),由于其特殊的磁性,出色的生物相容性和功能,已在肿瘤诊断和治疗中已发展为强大的工具。我们在此处概述了诸如氧化铁纳米颗粒,元素掺杂纳米复合材料和铁基有机框架(MOFS)等INM如何显示多功能性,以改善肿瘤成像和治疗。在成像方面,INM提高了磁共振成像(MRI)和光声成像(PAI)等技术的灵敏度和准确性,并支持多模式成像平台的开发。关于治疗,INM在高级策略中起着关键作用,例如免疫疗法,磁性高温和协同组合疗法,这些疗法有效地克服了肿瘤诱导的耐药性并降低全身毒性。INM与人工智能(AI)和放射线学的整合进一步扩展了其精确肿瘤识别,治疗优化和扩增治疗监测的能力。INM现在将材料科学与先进的计算和临床创新联系起来,以实现下一代癌症诊断和治疗学。
光声成像 (PAI) 是一种非侵入性混合成像方式,可提供丰富的光学对比度和高深度分辨率比的深层组织成像。体内存在的内源性发色团(如血红蛋白、脂质、黑色素等)由于在某些光学窗口具有强光吸收性而提供强大的光声对比度。为了进一步提高 PAI 的性能,研究人员开发了几种外源性造影剂,如金属纳米粒子、碳基纳米材料、量子点、有机小分子、半导体聚合物纳米粒子等。这些外源性造影剂不仅有助于提高成像对比度,而且还使靶向分子成像成为可能。在这篇评论文章中,我们首先讨论了具有内源性造影机制的最先进的 PAI 技术。然后,我们概述了用于体内成像应用的外源性光声造影剂的最新进展。最后,我们介绍了现有 PA 造影剂的优缺点以及基于造影剂的 PAI 在生物医学应用中的未来挑战。
I.引言将来会影响放射学的各种关键收入。这些是大数据分析,人工智能,云存储,机器人和智能机器,3D打印,增强现实和虚拟现实(AR&VR),放射基因组学,大脑计算机接口等万维网遥控性影响全球放射线服务以及放射学成像和患者数据的易于访问性。[1] II。 人工智能(AI)AI有助于尽早发现疾病过程,确定隐藏的异常,增加患者的可及性并增加偏远/农村患者进入的偏远地区覆盖范围。 [2] AI还减少了放射学人员的短缺。 [3] iii。 提高精度和高级成像精度药物的自动化已成为疾病治疗和预防的方法。 因此,放射线学已发展为新的放射学领域。 使用放射线学,放射科医生和计算机使用深度学习来帮助AI查找像素的模式。 精确医学和放射线学将继续增长,随之而来的是某些放射科医生的任务是自动化的机会,留下了更多的时间去做其他工作,例如介入放射学。 iv。 高级成像技术在放射学中有许多新技术。 [4]当前正在发展和流行。 与放射线学,光声成像和Terahertz成像一起起作用,并发挥重要作用。 这些技术将允许与当前可能的更详细和准确地拍摄身体的图像。[1] II。人工智能(AI)AI有助于尽早发现疾病过程,确定隐藏的异常,增加患者的可及性并增加偏远/农村患者进入的偏远地区覆盖范围。[2] AI还减少了放射学人员的短缺。[3] iii。提高精度和高级成像精度药物的自动化已成为疾病治疗和预防的方法。因此,放射线学已发展为新的放射学领域。使用放射线学,放射科医生和计算机使用深度学习来帮助AI查找像素的模式。精确医学和放射线学将继续增长,随之而来的是某些放射科医生的任务是自动化的机会,留下了更多的时间去做其他工作,例如介入放射学。iv。高级成像技术在放射学中有许多新技术。[4]当前正在发展和流行。与放射线学,光声成像和Terahertz成像一起起作用,并发挥重要作用。这些技术将允许与当前可能的更详细和准确地拍摄身体的图像。V.放射基因组学
房颤(AF)是一种普遍的心律不齐,而肺静脉分离(PVI)已成为其处理中的基石。耐用病变的产生对于成功和持久的PVI至关重要,因为不一致的病变导致消融后的重新连接和复发。已经开发出各种方法来评估体内病变质量和跨性别的方法,用作改善病变创造的替代物,并利用射频(RF)能量的长期结局。本综述手稿研究了使用RF能量时每天在电生理实验室中每天使用的病变创造和不同病变评估技术的生物物理学。这些方法为病变有效性提供了宝贵的见解,促进了优化的消融程序并减少心律不齐的复发。但是,每种方法都有其局限性,建议在AF导管消融过程中进行全面病变评估的技术组合。成像技术的未来进步,例如磁共振成像(MRI),光学相干断层扫描和光声成像,在进一步增强病变评估和指导治疗策略方面有望。
LhARA 将集成尖端技术,包括:• 激光驱动质子和离子源:该组件产生短而强的脉冲,用于“FLASH”辐射和紧密聚焦的微型光束。与传统方法不同,LhARA 无需准直即可实现这一目标。• 电子等离子体(Gabor)透镜:激光驱动离子源产生高度发散的光束,具有很大的能量散度,每个脉冲的能量散度可变化高达 25%。Gabor 透镜是传统螺线管的经济高效的替代品,并具有强大的聚焦能力。• 使用固定场交变(FFA)梯度加速器进行后加速:将使用固定场交变梯度加速器进行快速加速,从而可以灵活调整离子束的时间、能量和空间结构。与英国主要离子源激光器和加速器研究所团体的合作确保了强劲的发展。• 患者定位的智能自动化。• 包括离子声成像在内的新型仪器和诊断技术。
10:15 – 10:30 推进多模态光声成像用于脑功能研究 Zhenyue Chen 博士,苏黎世联邦理工学院/乌苏里高等医学院校生物医学工程研究所 10:30 – 10:45 使用功能性超声成像对小鼠的情绪状态进行全脑编码 Bradley Edelman 博士,德国马丁斯里德马克斯普朗克精神病学研究所 10:45 – 11:00 用于神经成像的 PET 示踪剂的开发:从啮齿动物到人类 Linjing Mu 博士,苏黎世联邦理工学院药物科学研究所 11:00 – 11:15 脊髓功能性磁共振成像 Gergely David 博士,巴尔格里斯特大学脊髓损伤中心医院和苏黎世大学 11:15 – 11:30 使用 7T MRI 进行体内组织学研究 Martina Callaghan 教授,伦敦大学学院神经成像科学系 11:30 – 11:45 使用 OPM 对大脑和脊髓的神经磁场进行成像 Stephanie Mellor 博士,伦敦大学学院神经成像科学系