TI-RADS 评估后,我发现我可以从减少约 27% 的阴性活检到消除 41%。然后,如果我添加 AI 修饰符,我可以将阴性活检减少高达 57%。这意味着,通过遵循甲状腺助手的建议,我几乎可以避免 60% 的活检。”
摘要:物体导航广泛用于目标检测。在这种系统中,通过距离测量来检测最近的物体。测量的距离和传感器的选择取决于应用类型以及周围的环境问题,如温度、湿度、雾等。对于短距离测量,使用超声波传感器。超声波传感器输出用于测量距离。计算、处理、控制和显示单元在 FPGA 上实现。Xilinx 综合工具用于在 FPGA 上实现设计。FPGA 具有更快的处理能力、低功耗,并且易于重新配置以用于必要的应用。测量的距离显示在段显示器上。关键词:FPGA 套件、超声波传感器 HC-SR04、7 段显示单元、Xilinx ISE 设计套件。
靶向给药有望提高当前全身药物治疗的有效性和安全性。聚焦超声正成为一种非侵入性和实用的靶向药物释放能量。然而,尚未确定哪种纳米载体和超声参数能够提供有效和安全的释放。全氟碳纳米液滴有可能实现这些目标,但目前的方法要么有效,要么安全,但不能兼具两者。我们发现,只要被足够低频率的超声激活,具有高度稳定的全氟碳核心的纳米载体就能介导有效的药物释放。我们证明了这种配方在非人类灵长类动物中具有良好的安全性。为了便于将这种方法转化为人类,我们提供了一种制造纳米载体的优化方法。这项研究提供了一种配方和释放参数,用于通过聚焦超声波在身体部位从纳米颗粒载体中有效安全地释放药物。
神经调节装置,例如外周神经刺激器和迷走神经刺激器,被批准用于治疗枕神经痛、偏头痛、癫痫和抑郁症。6 神经调节已被用于治疗肥胖症、7 抑郁症、8 阿尔茨海默病、9 创伤后应激障碍、10 药物成瘾、11 神经性厌食症、12 中风康复 13 和许多其他疾病。随着我们逐渐了解越来越多神经系统疾病的回路过程,我们可以扩大这些创新疗法的适应症。对网络疾病机制的这种日益深入的理解提出了更精细的神经调节方法,可能需要跨多个目标协调神经感知和刺激。在过去十年中,闭环刺激范式已成为神经调节领域的一个重要范式转变。14 该技术现在已在用于治疗癫痫的 RNS 设备中商业化使用。 3 最新一代迷走神经刺激器系统还结合了心率检测作为癫痫发作活动的闭环指标和刺激触发。15 最后,一些最新的 DBS 系统记录选定的局部场电位,并有能力(目前锁定在商业版本中)根据这些信号调整刺激。16
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。
超声波技术有多种用途。成瘾是下一个前沿... https://www.washingtonpost.com/health/2024/05/06/ultrasound-addictio...
在复合材料(例如纤维金属层压板(FML))中检测并表征隐藏的损害仍然是一个挑战。引导的超声波(GUW)或X射线影响通常用于检测这些损害,但它们的解释仍然存在,在非破坏性测试(NDT)和结构健康监测(SHM)中也是如此。数据驱动的预测指标模型可以检测与GUW时间相关信号的结构中的损害,但是实验训练数据缺乏差异,统计强度和超参数空间的质量覆盖率。通常会经历心理数据缺乏目标参数的基础真理注释。综合数据通常是创建强大而广义的损害预测模型的唯一解决方案。可以使用基于模型,模型辅助或无模型方法生成合成传感器数据。然而,通过应用有限元方法或求解字段方程式通过数值计算的GUW信号表明,由于过多的约束和简化,尤其是在非同质的材料,复合材料和层板的情况下,由于过多的约束和简化而显示出差的现实统计。数据驱动的生成模型的最新发展,例如生成对抗(神经)网络(GAN)[1],通常是由大量生成过程驱动的,包括确定性样式矢量以生成特定信号数据[2] [2],确定损坏大小,位置,位置,定位,传递器位置,材料,材料,材料,材料,材料,材料,材料。这些新体系结构旨在通过使用
神经系统疾病是全球最常见的致残原因和第二大死亡原因。这些疾病通常与脑血流的变化和受损有关,因此脑血管成像对于临床诊断和科学研究都至关重要。然而,目前可用的工具(其中最主要的是磁共振成像(MRI))不足以普遍地检查活体大脑:(1)血管本质上是动态的,但现有工具只能捕捉静态快照;(2)脑血管跨越从厘米到微米的尺度,速度从几米每秒到不到一毫米每秒,但 MRI 缺乏捕捉全频谱的分辨率和灵敏度;(3)MRI 扫描仪体积大、幽闭,需要患者保持静止,这无法对患者进行连续成像或自由移动时的成像,也无法扫描患有运动障碍、幽闭恐惧症或肥胖的人。
同时本地化和映射(SLAM)是构建环境一致地图的过程,自动移动机器人行驶时,同时确定其在未知环境中未知位置中的地图上的位置。SLAM用于诸如自动驾驶汽车系统,灾后恢复以及生命检测,矿山或凹痕地图提取等技术。SLAM旨在改善当今的自动驾驶机器人技术,并在将来建立近乎完美的自主机器人技术。有了这个想法,研究人员对大满贯问题的兴趣及其研究越来越持续。以这种方式,SLAM使结果更接近现实。自主机器人最重要的标准之一是它感知其环境的能力。放置在机器人上的传感器将环境条件信息转换为适用于机器人处理的信号。适当的传感器选择非常重要,因为它影响了向机器人提供的环境条件信息的质量和数量。这项研究旨在确定SLAM中使用的传感器技术及其对SLAM问题解决方案的贡献。在这项研究中,使用单个传感器在特定环境中获取数据。索引项 - 自主,本地化,映射,机器人,传感器。
西弗吉尼亚大学洛克菲勒神经科学研究所的研究人员上周在《新英格兰医学杂志》上公布了他们的研究结果。该研究所的神经外科医生、这项研究的负责人阿里·雷扎伊博士说,当屏障打开时,32% 的斑块被溶解。该小组没有测量进入大脑的抗体量——这需要对药物进行放射性标记——但在动物研究中,雷扎伊博士说,打开屏障可以让 5 到 8 倍的抗体进入大脑。