词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪音的相位反转 180 度并将此反转信号添加到原始噪音中来降低背景噪音的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]
词汇表 A A 加权:一种用于获得单个数字的技术,该数字代表包含广泛频率范围的噪声的声压级,其方式近似于耳朵的响应:人耳对所有频率的声音的反应并不相同,在低频和高频下的效率低于中频或语音频率。因此,使用 A 加权会弱化低频和高频。像差:与完美图像再现的任何差异。像差仪:一种用于测量光学像差的仪器。眼科像差仪的开发是为了测量无法通过自动验光仪或更传统的临床方法测量的复杂屈光不正。绝对阈值:导致感觉反应的刺激的最小值。适应:对新的身体和/或环境条件的生理调整(适应)。调节:眼睛的自动对焦过程,有助于在不同观看距离下保持清晰的视网膜图像。消色差:镜片组合(通常接触),可减少色差。声学:与声音或听觉有关。声学显示:呈现声学信息的显示。声场:对特定空间中声音行为的描述;特定开放、部分受限或完全封闭空间中一个或多个声源产生的声压分布。包含声波的空间区域 声阻抗:给定表面上平均的有效声压与流过该表面的声能有效体积速度之比。阻抗的单位是 Pa-s/m 3 或 dyne-s/cm 5 ,称为声欧姆 (Ω)。声学人体模型:人体头部(或人体头部和躯干)的复制品,在耳道中鼓膜位置放置麦克风,用于进行声学测量和声音记录。听神经:[参见听觉神经] 声压:[参见声压] 声反射:中耳肌肉的一种动作,可降低耳朵对高强度刺激的敏感度。声学特征:给定声源的特征声音,可用于识别声源。声波:通过弹性介质传播的机械扰动。声学:声音的产生、传输和接收的科学。执行器:用于或旨在用于移动或控制某物的设备。有源矩阵电致发光 (AMEL):一种电致发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵液晶显示器 (AMLCD):一种液晶显示器,其中每个像素由专用电子开关控制,并以矩阵形式(行和列)排列。有源矩阵 OLED (AMOLED):一种有机发光显示器,其中各个像素由专用电子开关控制,并以矩阵形式(行和列)排列。主动降噪 (ANR):通过电子方式将背景噪声的相位反转 180 度并将此反转信号添加到原始噪声中来降低背景噪声的过程。动作空间:个人移动和做出决定的区域(半径 2 米内)。适应:感觉系统对长时间刺激的自动调整。[参见视觉适应和听觉适应]
声源发出的部分声能将在穿过水时被吸收。吸收的量取决于海况。当风大到足以产生白浪并导致气泡在水面层聚集时,吸收率很高。在这种情况下,任何撞击水面的声音的一部分都会在空气中丢失,一部分会在海中向散射方向反射。在尾流和强流区域(如激流),声能损失更大。因此,由于假回声、高混响和吸收增加的综合影响,回声很难穿过尾流和激流。高频吸收比低频吸收更大。因此,低频往往传播得最远。
摘要 — 我们考虑了水下声源的 DIFAR 声纳浮标方位估计问题。基于标准反正切的方法利用不同通道的观测噪声之间的正交性来形成方位估计,并忽略了实际源信号的相关结构。在本文中,我们提出了一种新的状态空间技术,与标准反正切估计器相比,该技术利用源信号中的相关结构来实现增强的性能,特别是在低信噪比 (SNR) 条件下。使用一些实际信号类别的模拟支持了该分析。索引术语 — 方位估计、DIFAR 声纳浮标、增强型复卡尔曼滤波器、随机游走建模、复圆度、宽线性估计
当声束以反射声音或将其反射回声源的方式撞击物体或传输介质之间的边界区域时,就会产生回声。当声波撞击密度与其传播介质不同的介质时,有时会发生声波反射。当两种介质的密度相差很大,并且声波撞击的角度很大时,就会发生这种情况。这是因为声波在两种不同密度中传播的速度不同。例如,在海水中传播的声波几乎完全在水和空气的边界上反射。海水中的声速大约是空气中的声速的四倍,而水的密度是空气的 800 多倍。因此,几乎所有的声束都会从海面向下反射。
表 1.4-1:针对本次 MMPA 授权申请分析的主要训练演习和综合/协调反潜战活动 .........................................................................................................................................8 表 1.4-2:定量分析的声纳和其他传感器 .........................................................................................................................................12 表 1.4-3:定量分析的可在研究区域水下或水面使用的爆炸源 .........................................................................................................14 表 1.5-1:拟议的训练和测试活动 .........................................................................................................................................15 MITT 研究区域内海洋哺乳动物 MMPA 的结果......................................................................................................................................................15 表 1.5-2:在训练和测试活动期间分析的声源类别 B 和使用的数量.........................................................................................................27 表 1.5-3:在训练和测试活动期间分析的爆炸源类别 B 和使用的数量.........................................................................................................29 表 1.5-4:缓解类别.........................................................................................................................................................................31 表 3.1-1:海洋哺乳动物
当我们乘坐繁忙的火车、穿过拥挤的城市或与朋友聚会时,我们经常会面临复杂的听力挑战。在这种情况下,人们不断接触许多不同的、重叠的声源,如语音、音乐或交通噪音。听觉场景分析需要分离和识别不同的听觉对象,抑制不相关信息,并对相关信息进行高级处理(Kaya 和 Elhilali,2017 年)。不同听觉对象的分割和流式传输可能非常困难,可能需要大量的注意力资源(Herrmann 和 Johnsrude,2020 年)。许多听力受损的人难以将听觉对象彼此区分开来,这使得多说话者设置对这一群体来说尤其具有挑战性(Shinn-Cunningham 和 Best,2008 年)。最先进的听力
注意:1) V1 = 1~,220~240V,50Hz。2) 标称制冷能力基于:室内温度 27°CDB/19°CWB • 室外温度 35°CDB • 制冷剂管道长度 7.5m • 液位差 0m。3) 标称制热能力基于:室内温度 20°CDB • 室外温度 7°CDB/6°CWB • 制冷剂管道长度 7.5m • 液位差 0m。4) 容量为净值,包括室内风扇电机热量的制冷扣除额(制热增加额)。5) 应根据标称容量选择设备。最大。容量仅限于高峰时段。6) 声压级通过距离设备一定距离的麦克风测量(测量条件:请参阅技术数据手册)。7) 声功率是一个绝对值,表示声源产生的“功率”。