• AN-SLQ-25 • MK30 Mod 1/2 • 技术更新工程 • 信号分析系统 • HWT/LWT 声纳技术插入 • ADC MK5 • MK 39 EMATT • 系统集成 • 生产重启 • 生产工程支持 • 系统评估和验收测试支持 • 舰队引入规划 • 承包商绩效评估和风险降低
ANTIETAM 配备了 ANISPY-1A 相控阵雷达、宙斯盾作战系统和发射 SM-2 Blk II 导弹的 Mk 41 垂直发射系统,是海军首屈一指的防空战 (AAW) 平台。结合宙斯盾显示系统的四个大屏幕显示器、大量通信系统、自动状态板和十七个 NTDS 控制台,所有这些都由宙斯盾作战系统协调,指挥和控制功能首屈一指,能够为任何战斗群作战指挥官提供支持。为支持这一卓越的防空战能力,ANTIETAM 配备了 ANISQS-53A 声纳、最先进的 ANISQR-19 拖曳阵列声纳和 LAMPS Mk 111 直升机。这使她拥有无与伦比的远距离和短距离反潜战能力。两门 5 英寸/54 火炮搭配高精度 Mk 86 火炮火控系统,可提供强大的反水面威胁。最后,战斧和鱼叉武器系统的组合使这支部队具备了与“超视距”敌人作战的能力。
ANTIETAM 配备了 AN/SPY-1A 相控阵雷达、AEGIS 作战系统和发射 SM-2 Blk I1 导弹的 MK41 垂直发射系统,是海军首屈一指的防空作战 (AAW) 平台。这些系统与 AEGIS 显示系统、包括 JTIDS Link 16、自动状态板和 17 个 NTDS 控制台在内的大量通信系统相结合,使其指挥和控制能力在支持战斗群作战指挥官方面首屈一指。ANTIETAM 还配备了 AN/SQS-53A 声纳、AN/SQR-19 拖曳阵列声纳和 LAMPS Mk I11 直升机,使其具有无与伦比的远程和短程反潜战 (ASW) 能力。两门 511 54 口径 MK 45 火炮由 MK 86 火炮火控系统制导,提供强大的海军火炮火力支援能力,并增强了鱼叉武器系统在反水面战 (ASUW) 中的作用。最后,战斧武器系统提供打击战能力,使 ANTIETAM 能够以致命的精度在水平线上打击陆地和海上目标。
网络传感器系统中的分布式检测优化问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,以提高多静态声纳应用的检测性能和能源效率。这是通过在传输到场外之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测结果来减少随机不相关的误报。场外接触传输的减少允许每个浮标具有较低的信号过量阈值,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络内融合的有效性。
检测水下物体是最关键的技术之一,并且在海军战中开发复杂的声纳系统一直存在着努力。反对这样的努力,隐藏水下车辆,设备和武器的对策是另一个技术挑战。针对潜艇和其他水下物体(例如海军矿山)的声音检测的有效对策之一是使用复合/混合材料来防止易于检测。几何形式,形状和层,以及声学阻抗的调整,通过吸收声波波导致声纳信号大大降低。在这项研究中,开发了多层复合/杂种结构的原始和新颖设计,并在80 kHz-100 kHz频率范围内应用了水下声学测试程序。这项研究中获得的发现表明,具有多孔结构的多层复合/杂化材料的值比钢板的值要低得多,并且可能是潜在的候选物,作为水下矿山的覆盖和/或外壳材料,以减少在检测和识别识别的声学签名。
GPS 选项卡 ................................................................................ 97 航班选项卡 .............................................................................. 98 航线选项卡 .............................................................................. 98 点选项卡 .............................................................................. 98 轨迹选项卡 .............................................................................. 99 声纳选项卡 .............................................................................. 99 飞机选项卡 .............................................................................. 100 警报选项卡 .............................................................................. 100 天体选项卡 .............................................................................. 103 消息选项卡 ............................................................................. 107 显示选项卡 ............................................................................. 108 声音选项卡 ............................................................................. 109 设置选项卡 ............................................................................. 110 位置子选项卡 ............................................................................. 114
执行摘要SC19指出,下一个对Skipjack Tuna的库存评估应考虑到捕捞设备技术发展作为技术(或努力)蠕变的技术发展所致的捕获效率的提高。本文档旨在根据FRA进行的有价值的访谈和问卷调查的结果来确定日本杆和线捕鱼设备的技术蠕变。比较了Matsubara等人在Matsubara等人中提出的渔具记录(声纳和鸟雷达)的访谈中获得的技术发展的比较。(2022)透露,渔船上的声纳设备在1980年代从单色监测器转移到了彩色监视器,并且在同一时期,安装速度往往会迅速增加。也观察到鸟雷达的类似趋势,其功率效率从1980年代后期到1990年代都增加了一倍。此外,调查表的调查调查调查表明,在连贯的时间内安装了重要的设备,例如声纳和鸟类雷达等重要设备,尽管设备的引入略低于较大的容器。这些支持特定技术进步的论点,结果表明,由于技术发展,捕捞效率的迅速变化。因此,技术蠕变是评估跳过金枪鱼股票的长期趋势时不容忽视的问题,并且将来需要进行更详细的调查,以评估捕获效率的变化的定量评估。1。2010; Eigaard等。2014;卢梭等。2019)。引言目前,Skipjack库存评估主要是基于CPUE指数根据杆和线渔业的数据进行的。在这些评估中,通常认为捕捉性是其简单性的时间不变,并且不考虑时间变化。然而,各种文献表明,无论物种或捕鱼方法如何,随着渔船设备的开发,捕捞性显然正在改变。由于声纳和鸟类雷达等渔具的技术发展而引起的捕捉性的时间变化被称为技术蠕变(本质上是努力蠕变的代名词,唯一的区别是人们专注于捕获性还是努力)。各种研究案例指出,忽略技术蠕变的长期库存评估会导致高估股票丰度(Thurstan等人。Matsubara等人已经显示了日本杆和线(JPPL)渔船的技术发展(JPPL)。2022,技术蠕变问题可能导致长期趋势评估的巨大偏见。实际上,已经报道了过度稳定的跳过库存动态状态,并且在2022年的初步评估研讨会上进行了大量讨论,这表明需要进行详细的分析(Hamer 2022)。将现场条件纳入定量数据中的访谈和调查可有效解决这些技术蠕变问题(Marchal等人2007;万豪等。 2011)。2007;万豪等。2011)。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸非典型性大规模搁浅的证据表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会伤害动物。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸大量搁浅的异常现象不断出现,这表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明,在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会对动物造成伤害。