在大多数情况下,AUV 等潜水器仍然需要一条称为系绳的物理电缆将水下航行器与水面部署船上的人工控制员连接起来。目前缺乏低成本高效的水下调制解调器是主要原因。微型通信声纳浮标旨在充当高度可部署的水下调制解调器,与水面上的射频 (RF) 发射器耦合,从而形成水面和水下基站之间的无缝通信链路。水下通信链路必须能够传输控制命令以及维持来自 AUV 综合故障排除系统 ITS [1] 的诊断数据流。通信链路以微型声纳浮标的形式封装,以方便通过 M-UAV 和旋翼四轴飞行器 [2 & 3] 进行部署。在本文中,我们介绍了微型通信声纳浮标的设计,其中包括最关键的组件——水下调制解调器。水下调制解调器由换能器、水听器和调制技术组成。二。限制 在设计微型通信声纳浮标时面临几个限制。其中一个主要限制是成本,因为初始资金来自低预算。另一个主要限制是声纳浮标的物理尺寸和重量,因为它不能超过 M-UAV 可以携带的最大有效载荷尺寸和重量。
配备 GPS 的声纳浮标 Gregory J. Baker 和 Y.R.M. Bonin 国防研究机构大西洋,邮政信箱 1012,达特茅斯,新斯科舍省,加拿大 B2Y 3Z7 以及 Michael Morris Ultra Electronics,Hermes Electronics Inc.,大西洋街 40 号,达特茅斯,新斯科舍省,加拿大 B2Y 4N 摘要 配备全球定位系统 (GPS) 的声纳浮标在校准水下声纳系统时非常有用。Hermes Electronics Inc. 与国防研究机构大西洋 (DREA) 合作开发了这样一种浮标。该声纳浮标是 Hermes AN/SSQ53D(2) DIFAR 声纳浮标的改进版。改进包括降低声学接收器的灵敏度、安装商用 GPS 引擎以及在浮标和 GPS 装置之间提供电子接口。由于对 DIFAR 导频音的调制干扰和功率考虑,需要禁用定向通道。浮标使用无源贴片天线和有源(供电)天线进行测试。使用 Waypoint Consulting 开发的 GPS 实时动态 (RTK) 软件评估从浮标传输的二进制数据的质量。本文概述了声纳浮标的改进,并介绍了在两次海上试验中使用浮标获得的结果。简介通常,需要在公海环境中校准水下声源。使用声纳浮标作为自由浮动的声学接收器,通过浮标上的甚高频 (VHF) 发射器和船上的甚高频接收器连接到船上
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在考虑传感器的最大感应范围的情况下,基于低精度的异构声纳浮标传感器对目标的 2D 位置进行定位方面是新颖的。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
由于需要及时发布该报告以供国会审议 1983 财政年度国防预算请求,因此 GAO 没有要求对这份报告发表官方意见。但是,GAO 确实与负责这些项目的高级官员讨论了这份报告的草案,他们同意所提出的法案。海军不同意终止 ERAPS,而是建议在采购之前正式审查 ERAPS 计划的技术和操作评估。但是,海军没有以研究、分析、论证或其他基础的形式提供切实证据来支持继续开发 ERAPS。GAO 仍然认为,除非海军提供令人信服的证据和合理的论证来证明技术已经到位并且 ERAPS 是必要的,否则应该终止该计划。
需要获得以下问题的实际解决方案:(1)在线计算每对有趣的声纳浮标的 TDOA 和(2)在线确定每个声纳浮标位置的良好估计值,至少用于测试目的。后一个问题可以通过例如测量从三个或四个已知位置的水下声波信标到每个声纳浮标的声音传输时间来解决。在我们的模拟中,浮标位置的标准偏差为 15 米,可以追踪到浮标听力范围约 100 米。对于实际应用,最好(也许需要)使用全被动、不可检测的系统,并且跟踪原理也可以在干扰条件下使用,例如存在密集的表面交通、多个目标、恶劣天气条件等。
提出了一种利用潜艇导航系统和声纳浮标测量潜艇在航行过程中目标强度的方法。直接序列扩频信号通过甚高频传输到遥测中继声纳浮标,后者以声学方式重新传输信号。标准声纳浮标接收信号并将其中继到数据记录器。使用高稳定性时钟同步发射器和接收器,可以通过直接和反射声路径在声纳浮标发射器和接收器之间进行精确的飞行时间测量。需要知道这三个物体的位置,以区分目标和表面反射,并测量源、目标和接收器之间的双基地角度。目标的位置由潜艇惯性导航系统估计,其他物体的位置则以潜艇位置为参考进行估计,并在潜艇移动时随时间构建基线。通过比较从直接路径和反射路径接收的信号与参考信号的相关性来计算目标强度。该技术可以在负 SNR 环境中进行目标强度测量。描述了该方法的实施,并给出了操作场景模拟的结果。
AN/SSQ-62E 还集成了命令功能选择功能,允许操作员在部署声纳浮标后修改其操作模式。AN/SSQ-62E 使用标准锂二氧化硫电池组。AN/SSQ-62E DICASS 可从固定翼或旋翼飞机上空中发射。声纳浮标的下降由降落伞稳定和减速。它也很容易从水面舰艇的甲板上部署。
最常用的潜艇探测和定位手段之一是定向频率分析和记录 (DIFAR) 声纳浮标系统。这是一种被动系统,通过接收潜艇发射的声学信号、探测和定位潜艇来工作。近年来,DIFAR 声纳浮标还被用于追踪鲸鱼的迁徙并记录它们发出的声音( McDonald,2004;Miller,2012;Greene Jr. 等,2004)。一般而言,DIFAR 声纳浮标配备有由五个水听器组成的水声天线,这些水听器由交叉的梯度水听器对和一个附加的中央水听器组成(Mallet,1975;Salamon,2004)。类似的没有中央水听器的天线系统也是已知的(Stover,1969;Salamon 等人,2000)。在本文中,作者将证明这两种解决方案都是正确的,并且在很宽的信噪比范围内提供类似的方位精度水平。与任何被动或主动声学系统一样,方位精度受噪声影响,其中噪声在声纳浮标的工作频率范围内(10 Hz 至 3 kHz)特别高(Salamon,2004;2006;Marszal 等人,2005)。了解
由于需要及时发布该报告以供国会审议 1983 财政年度国防预算请求,因此 GAO 没有要求对本报告发表正式评论。但是,GAO 确实与负责管理这些项目的高级官员讨论了本报告的草稿,他们同意所提出的法案。海军不同意终止 ERAPS,而是建议在采购之前正式审查 ERAPS 计划以进行技术和操作评估。但是,海军尚未以研究、分析、论证或其他基础的形式提供切实证据来支持继续开发 ERAPS。GAO 仍然认为,除非海军提供令人信服的证据和合理的论证来证明技术已经到位并且需要 ERAPS,否则应该终止该计划。
摘要 - 冷战期间开发了用于深而均匀的海底环境的最佳单基地声纳浮标场模式,其中可以使用简单的中值检测范围来定义声纳浮标之间有用的固定间距。然而,当前经常进行作战的沿海环境中的海洋和声学条件非常复杂和动态,以至于空间和时间的变化破坏了与传统战术搜索概念相关的同质假设。已经开展了几项研究工作来设计更好的被动和单基地主动声纳浮标位置,但其中大多数是评估算法,而不是真正的规划算法。一种不同的算法方法已成功开发并最初应用于单基地移动传感器,该方法从一组随机的传感器位置开始,然后使用遗传算法找到接近最优的解决方案。遗传算法解决方案是非标准搜索路径,可适应复杂的海洋学、可变的底部特性和假定的目标战术 [DP Kierstead 和 DR DelBalzo,军事作战研究杂志(2003 年 3 月/4 月)]。随后开发了一种新功能,用于优化复杂沿海环境中多基地主动声纳浮标的位置(纬度、经度和深度)和 ping 时间。这些算法称为 SCOUT(传感器协调以实现最佳利用和战术)。SCOUT 对移动传感器遗传算法方法进行了两项重大修改,以考虑双基地和多基地声纳浮标领域,其中每个接收器都能够观察来自每个来源的数据。第一个是结构上的修改,引入了一条新染色体来描述战术计划。它为每个声纳浮标提供一个基因,由一个位置、一个有序的部署序列和一组 ping 时间组成。新染色体中的位置和时间独立变异,并以不规则模式和非连续 ping 序列为特征。第二个修改是在检测建模方面,引入了一种新的双基地检测模型。它允许结合相干和非相干处理。对于这项工作,我们假设可以同时监控所有声纳浮标。SCOUT 算法是我们之前的遗传算法工作的扩展,据我们所知,它们代表了唯一从头开始设计复杂环境中多静态主动声纳浮标位置的解决方案,而不是推荐一般的努力分配或简单地评估具有不同参数的标准模式。本文讨论了新的染色体结构和现实环境中的模拟结果。结果表明:a) SCOUT 可以有效地使多静态传感器场适应