据报道,超过特定能量阈值的脉冲微波会在动物模型中造成脑损伤。造成脑损伤的实际物理机制尚无法解释,而这些损伤的临床现实仍存在争议。本文提出了脉冲微波可能通过将微波能量转换为脑水中的破坏性声子来损伤脑组织的机制。我们已经证明,低强度爆炸冲击波可能会在脑组织中引发声子激发。在这种情况下,脑损伤发生在纳米级亚细胞水平,这是根据脑水中声子相互作用的物理考虑所预测的。声子机制还可以解释原发性非撞击性爆炸引起的轻度创伤性脑损伤 (mTBI) 与最近在美国大使馆人员中观察到的可能由于定向射频辐射而导致的不明原因脑损伤的临床和成像结果之间的相似性。我们描述了实验以阐明脉冲微波可能损伤脑组织的机制、射频频率和功率水平。纳米级脑爆炸损伤的病理记录已得到实验支持,即使用透射电子显微镜 (TEM) 在没有肉眼或光学显微镜发现的情况下,证明了纳米级细胞损伤。需要进行类似的研究来更好地定义脉冲微波脑损伤。根据现有发现,临床诊断低强度爆炸和微波引起的脑损伤可能需要扩散张量成像 (DTI),这是一种专门的水基磁共振成像 (MRI) 技术。
在钙钛矿中晶格电位强的非谐度的影响,包括分层的丘比特,三维型晶体和相关系统[1,2,3]。此外,铜氧化物(CUO)中Cuo 6八氏菌(Cuo)的氧气原子应该具有双重潜力。这一事实得到了许多高t c超导体和相关父系统的确定,包括Yba 2 Cu 3 O 7-δ,La 2-x Sr X Cuo 4,以及通过Exed X-Ray X-Ray x-Ray X射线吸收结构(exafs)实验,and-x ce x cuo 4-Δ计算(请参阅[1,2,4,5]及其中的参考)。在SuperContucting Ba 1-x K x Bio 3 [6]中观察到异常氧振动的相似情况。参考。[7]用Jahn-Teller Polaron模型解释了超导LA 2 CUO 4中双井潜力的出现。在参考文献中讨论了双钙壶中的双孔电池。[8],进行区域中心软模式的计算是为了使极性和八面体旋转不稳定性表征。这些电势中的声子模式可能很不寻常。由其他原子形成的过度原子笼中弱结合离子的非谐振动通常被称为嘎嘎作响。已经在诸如Val 10 +Δ[9],laterates [10],Detecaborides [11]的材料中观察到它们。最近,建议在高压下合成的四倍体cucu 3 v 4 o 12 [3]。Rattling or other types of anharmonicity can lead, e.g., to Schottky-type anomaly of specific heat at low temperature [14], result in significant in- crease of electron e ff ective mass [15, 16, 17], suppress thermal conductivity [18, 19] or be a driving force for the superconduc- tivity [15, 16, 17, 20].在四倍的perovskites aa'3 b 4 o 12中
摘要 - 有效的手段,可以实现单铅,非侵入性和干性心电图(ECG)测量值,为在非临床环境中对移动用户进行长时间心律监测提供了潜力。但是,现有的ECG调查方法需要精确的电极放置,暨塞接线,并要求用户保持固定。另外,当前基于心脏的基于心脏的方法(例如Phonocartiogrons)缺乏检测至关重要的心律特征的灵敏度和精度,并且容易受到环境噪声的影响。这项工作利用脖子上的宽带宽表面声波麦克风通过颈动脉捕获心脏声音。提议将心形信号转换为相应的ECG波形的跨模式自动编码器,一种用于信号模态转换的最新算法。由9个参与者研究结果证明了通过声音声音构建PQRST波形的有效性,并准确地确定了关键的PQRST指标。最后,展示了用户步行的移动声学ECG波构建,为不引人注目的,长期的低成本每日心律监测奠定了基础。临床相关性 - 转换心脏声音信号,以实现突出的心电图指标,可以使用单节点干可穿戴设备进行低成本的每日心律监测。
Sugawara,K.,M。Inatsu和Y. Harada,2024年:使用大型合奏数据集对北海道吹雪的气候变化评估。大气上的科学在线信件(Sola),印刷中。
声明................................................................................................................................ 1
摘要 声门下狭窄很少是特发性的。在本病例报告中,一名 40 岁的女性患者出现病因不明的声门下狭窄,同时伴有双侧支气管狭窄。该患者因哮喘接受治疗已有 13 年,近 4 年来出现声音嘶哑。体格检查发现双侧有干咳。断层扫描分析显示 C6-7 水平 2 cm 段气管狭窄。支气管镜检查显示声门下狭窄。整个气管支气管树中均可见白色斑块;进行了活检并进行了灌洗。样本送去进行病理和微生物学检查。左主支气管入口和右中间支气管水平支气管系统狭窄明显。进行了扩张术。活检病理示慢性活动性炎症及鳞状上皮增生,结核菌及非特异性培养未见生长,胃肠道检查未见反流,血清学及风湿病学检查均正常。特发性声门下狭窄极为罕见,伴有特发性气管狭窄的支气管系统狭窄更为罕见,且治疗困难。
致谢广东工业大学的工作得到了广东省自然科学基金(批准号 2017B030306003 和 2019B1515120078)的支持。R. Wang 得到了广东省基础与应用基础研究基金(批准号 2021A1515110328 和 2022A1515012174)的支持。F. Zheng、Y. Fang 和 S. Wu 得到了国家自然科学基金(11874307)的支持。CZ Wang、V. Antropov 和 F. Zhang 得到了美国能源部 (DOE) 科学办公室、基础能源科学、材料科学与工程部的支持。艾姆斯实验室由爱荷华州立大学根据合同编号 DE-AC02-07CH11358 为美国能源部运营,包括在伯克利的国家能源研究超级计算中心 (NERSC) 提供计算机时间。 Y. Sun 的研究得到了美国国家科学基金会 DMR-2132666 号资助。R. Wang 和 H. Dong 还感谢广东工业大学校园网络与现代教育技术中心为本研究提供的计算资源和技术支持。
摘要。神经调节在解读神经回路和探索神经系统疾病的临床治疗中发挥着不可估量的作用。光声神经调节是一种新兴的模式,它受益于超声波的高穿透深度以及光子的高空间精度的优点。我们总结了各种用于神经调节的光声平台的最新发展,包括基于光纤、薄膜和纳米传感器的设备,强调了每个平台的主要优势。讨论了光声作为一种可行的神经调节工具的可能机制和主要障碍。提出了基础研究和转化研究的未来方向。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.032207]
摘要:近年来,二维磁性材料 (2DMM) 已成为二维材料领域的一个研究热点,因为它们在基础研究以及未来自旋电子学、磁子学、量子信息和数据存储等技术相关应用中具有重要意义。2DMM 丰富的工具箱及其多样化的可调谐性使得对二维磁序的研究达到了前所未有的水平,研究范围深入到单原子层材料,远远超出了经典的薄膜磁性,为电子学、磁光学和光子学提供了一条极具前景的途径。在各种自由度中,自旋和声子 (即晶格振动的量子) 之间的相互作用,即所谓的自旋-声子耦合,是探索二维磁性的重要调谐旋钮,创造了新型准粒子并控制磁序。本综述概述了 2DMM 中自旋-声子耦合研究的最新进展。讨论了利用自旋-声子耦合研究二维磁性的各种技术。本文还总结了基于自旋-声子耦合调节二维磁序的最新进展,重点介绍了新功能。此外,本文还简要讨论了基于自旋-声子耦合的器件开发和概念。本综述将为我们介绍二维磁体及其功能器件中自旋-声子耦合研究的现有挑战和未来方向。