对无限层镍酸盐的研究已经揭示了一个破裂的翻译对称性,这对其根部引起了浓厚的兴趣,与超导性的关系以及与丘比特的电荷顺序的比较。在这项研究中,在无限层Prnio 2+ 𝛿薄膜上进行了谐振X射线散射测量。与PR𝑀5共振在依赖能量,温度和局部对称性的pr𝑀5共振相比,Ni𝐿3吸收边缘在Ni𝐿3吸收边缘处的超晶格反射的显着差异。这些差异指出了两个不同的电荷顺序,尽管它们具有相同的平面内波vector。鉴于在不完全降低的prnio 2+膜中观察到谐振反射,这些差异可能与多余的氧气掺杂剂有关。此外,方位角分析表明,氧配体在Ni𝐿3共振下揭示的电荷调制中可能起关键作用。
等。2014)。也是,Cr(VI)主要存在为HCRO 4-和Cr 2 O 7 2- pH时为2.0至6.4,CRO 4 2- pH> 6.4 235
4.1 总体原则................................................................................................................ 14 4.2 载荷............................................................................................................................... 14 4.3 结构能力评估.............................................................................................................. 15 4.4 材料和焊接................................................................................................................ 16 4.5 评估/验收标准....................................................................................................... 16 4.6 安全等效原则....................................................................................................... 18
摘要:城市热岛效应已成为城市地区的关键问题,加剧了与热有关的问题并增加能源消耗。将普通的波特兰水泥(OPC)与源自Periwinkle壳粉的碳酸骨料结合起来,以开发有效的凉爽材料。通过碳酸过程,骨料会经历转换,捕获二氧化碳(CO 2)并将其转换为方解石。所得的水泥混合物表现出高太阳反射特性,使其成为凉爽路面和屋顶应用的潜在候选者。在这项研究中,对原材料(包括Periwinkle壳粉末)进行了表征,并评估了碳化过程以量化CO 2捕获效率。此外,对这种新水泥在屋顶上的效率的真实测试表明,该材料达到了显着的冷却效果,比在太阳辐射峰处的标准OPC凉爽6°C。关键字:城市热岛,碳捕获,凉爽的材料,碳酸骨料,回收骨料,水泥材料■简介
摘要:城市热岛效应已成为城市地区的关键问题,加剧了与热有关的问题并增加能源消耗。将普通的波特兰水泥(OPC)与源自Periwinkle壳粉的碳酸骨料结合起来,以开发有效的凉爽材料。通过碳酸过程,骨料会经历转换,捕获二氧化碳(CO 2)并将其转换为方解石。所得的水泥混合物表现出高太阳反射特性,使其成为凉爽路面和屋顶应用的潜在候选者。在这项研究中,对原材料(包括Periwinkle壳粉末)进行了表征,并评估了碳化过程以量化CO 2捕获效率。此外,对这种新水泥在屋顶上的效率的真实测试表明,该材料达到了显着的冷却效果,比在太阳辐射峰处的标准OPC凉爽6°C。关键字:城市热岛,碳捕获,凉爽的材料,碳酸骨料,回收骨料,水泥材料■简介
本文报告了NAGDF 4:YB,ER,CE@NAGDF 4:YB,ND@NAGDF 4 Core-Shell-Shell-Shell downversion纳米粒子(CSS-DCNPS)在近红外第二个生物窗口(NIR-II:1000-1700 nm)中的光(csss-dcnps)报道。Through a precisely controlled plasmonic metallic nanostructure, fluorescence from Yb 3 + induced 1000 nm emission, Nd 3 + induced 1060 nm emission, and Er 3 + induced 1527 nm emission are enhanced 1.6-fold, 1.7-fold, and 2.2-fold, respectively, under an 808 nm laser excitation for the CSS-DCNPs coupled with a gold在980 nm激光激发下,ER 3 +诱导的ER 3 +诱导的1527 nm发射的孔CAP纳米架(Au-HCNA)的增强量可提高6倍。为了深入了解增强机制,通过FDTD模拟和寿命测量结果研究了ER 3 +诱导的NIR-II在1550 nm下的ER 3 +诱导的NIR-II排放的调节,这表明观察到的散热增强可归因于增强的激发和增强的辐射式差异的组合。
在 SEM 过程中,样品会发射出特征 X 射线。我们可以使用能量色散 X 射线光谱仪 (EDS 或 EDX) 来检测特征 X 射线,以进一步表征元素成分。当主束电子撞击内壳电子时,会产生一个空隙,来自原子较高壳层的电子会落下以填补空隙。这种电子落下会释放原子以 X 射线形式发射的能量。特征 X 射线的能量模式取决于原子中电子壳层之间的能级差异,而每种原子的能级差异都是独一无二的。该信号可以从材料深处逸出,从而可以对 100 纳米到微米深度之间的成分进行调查。