你也可以用生物炭为人们制作小便池。将一些生物炭放入一个带盖的桶中,然后将尿液排入桶中。不使用时盖上盖子。桶装满后,添加更多生物炭。生物炭会吸收尿液,气味会减少。当桶装满时(或每天,随你喜欢),将桶倒空到堆肥堆上,并用植物材料覆盖。这是花园中优质而廉价的氮源。新鲜尿液是无菌的,不含病原体。
土壤健康基础物质土壤有机物(SOM),约为50%的土壤有机碳(SOC),对土壤健康至关重要。通常,生根区的SOM含量约为1-2%,是土壤聚集,水容量,充气和养分保留的关键阈值。当土壤失去有机物时,它们无法充分发挥作用,从而减慢了养分周期并容易发生风和水侵蚀。这种土壤健康的下降降低了生态系统的弹性,使生态系统更容易受到非本地或入侵物种,干旱和树木死亡率的增加。此外,当车辆和机械导致过多的土壤压实时,土壤健康会降低,去除植被以增加侵蚀,当降水不足以通过土壤剖面浸出或失去表面有机视野时,盐会积聚。这种土壤健康的下降经常通过森林生态系统腐烂,从而增加了诸如干旱,野火,疾病和昆虫爆发等更大干扰的树木和其他植被死亡率的风险。
摘要 - 这项研究列出了通过乳液形成方法预处的壳聚糖微观结构中的长矛油(SMO)的封装。SMO虽然具有药物意义,但由于其在条件下的稳定性较小和高波动性,但在医疗和功能纺织品中发现了lim的应用。尽管如此,它在壳聚糖中的封装可能会增强其在上述目的的稳定性和适用性。使用不同的分析技术表征了SMO封装的壳聚糖微观结构,并通过柠檬酸的绿色交联应用棉织物。经过处理的织物揭示了通过SEM和FTIR分析证实的微胶囊的成功粘附在其表面上。那里观察到处理的织物的拉伸强度略有下降;然而,通过减少其99%的人口,改善了折痕恢复行为和良好的抗菌活性,以应对广谱细菌菌株;而这种织物的刚度在某种程度上表现出趋势。因此,在此产生的增值多功能纺织品可以为潜在的医疗和医疗保健应用提供表面和抗菌活性,而不会损害其舒适性。
了解原子基本参数 (FP),例如荧光产额、光电离截面和科斯特-克罗尼希跃迁概率,对涉及 X 射线荧光 (XRF) 的任何定量分析都至关重要。不同元素的大部分现有实验和理论 FP 值都是四十多年前获得的。对于某些化学元素和某些 FP,由于不存在实验或理论数据,所以列表数据完全基于插值。不幸的是,大多数列表 FP 数据的不确定性通常不可用或仅是估计的。由于这种情况肯定是可以改善的,国际 X 射线基本参数倡议 [ 1 ] 和其他组织正在努力通过采用最新技术的新实验和计算来重新审视和更新 FP 数据库。在这项工作中,钽 L 壳层基本参数,即荧光产额和科斯特-克罗尼希因子,正在通过实验重新确定。钽是微电子[ 2 , 3 ]、太阳能工业[ 4 ]、医药等领域的关键元素。另一方面,通过实验确定的 Ta-L 壳层荧光蛋白相当稀缺。大多数可用的实验数据都超过 30 年,而最常见表格[ 5 , 6 ] 的不确定性估计值仅为估计值。在这项工作中,我们应用 PTB[ 7 ] 的无参考 XRF 设备以及专用的透射和荧光测量[8] 来重新审视钽的这些参数。
RMIT的ARC Biosolids Transformation Center副主任Kalpit Shah教授负责共旋溶式多饲料(食品,花园和生物固体),以生产富含碳的生物炭。使用RMITS获得专利的Pyroco技术,一种流化的床热交换器生产生物炭,可显着改善热量和传质,并且以较低的成本进行。RMIT研究表明,碳纳米材料涂层生物炭可以显着改善碳含量,电池和超电容器性能。他们还发现,生物炭质量很重要,尤其是去除原料收集过程中可能发生的任何杂质(例如二氧化硅)。迪肯大学的电池和创新,由玛丽亚·福赛斯(Maria Forsyth)教授领导,测试了生物素蛋白Na-ion电池。“生物固体衍生的生物壳”的一种与当前的商业阳极材料非常相似,从而验证了其可行性并证明了潜力。