摘要 飞机水平稳定器容易因气流与机翼分离以及随后其尾流对稳定器结构的冲击而发生疲劳损坏,这被称为抖振事件。在本文中,之前开发的等几何混合壳方法在动态分析设置中被重新制定,以模拟使用不同俯仰角的飞机起飞。所提出的 Kirchhoff-Love (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高精度 3D 应力,而使用计算效率高的 KL 薄壳对不太重要的部件进行建模。施加的气动载荷由混合浸入几何和边界拟合的计算流体动力学 (CFD) 分析生成,以准确记录稳定器外表面的动态激励。具体来说,为了节省计算量,除了机翼和稳定器之外的整个飞机都浸入基于浸入几何分析 (IMGA) 概念的非边界拟合流体域中,而围绕飞机机翼和稳定器的网格则采用边界拟合,以准确计算稳定器上的气动载荷。然后将获得的载荷时间变化应用于水平稳定器的动态混合壳分析,并评估高保真应力响应以进行后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的抖振引起的疲劳损伤。代表性水平稳定器的稳态和动态非线性混合壳分析结果证明了所提方法的数值精度和计算效率。
我们认为,我们的总绝对排放量在2018年达到1.73 Gigatonnes的二氧化碳等效含量(GTCO 2 E)。[a]操作控制边界。范围1和2目标是净基础。[b]参考年度。[C] Shell的NCI是Shell出售的能量产品的平均强度,由销售量加权。NCI中包含的估计总温室气体(GHG)排放量对应于与Shell在股票边界上出售的能量产品相关的良好的轮胎排放,这是碳信用净值的净值。这包括与其他由Shell出售的其他能源产品相关的富裕排放。排放量被排除在外。[D] 2021目标2-3%,2022目标3-4%,2023目标6-8%,全部实现。承认能量转变变化速度的不确定性,我们还选择退休2035年目标,即净碳强度降低了45%。[e]我们的目标是将甲烷排放强度保持在0.2%以下,并到2030年达到接近零的甲烷排放。[f]来自所有石油和天然气资产的甲烷排放强度,其销售其气体的运营商(包括LNG和GTL资产)定义为正常立方米中甲烷排放的总量(NM3),每种可在NM3中出售的气体总量。[g]来自所有油气资产的甲烷排放强度在重新注射气体的地方定义为每吨总质量的石油和冷凝水的总质量,可在吨中出售。[H]我们的目标是在2025年消除上游操作中的常规气体,但要完成SPDC的销售。[i]我们设定了一个新的野心,将与我们的石油产品使用相关的绝对排放量减少到2030年,而2021年(范围3类别11)。使用我们的石油产品(范围3,第11类)的客户排放量为2023年的5.17亿吨二氧化碳等效含量(CO 2 E),而2021年的客户排放量为5.69亿吨Co 2 E。
生物炭是一种具有良好吸附性和高稳定性的环保材料,广泛用于水和土壤污染控制领域(Zhao等。2020,Xu等。2021)。近年来,生物炭吸引了相当大的关注,因为它具有改善土壤环境的能力及其对土壤微生物COM市的积极影响(Zhou等人。2020)。土壤是一个高度复杂的栖息地,其中包含许多土壤微生物。重要的是要研究生物炭对这些微生物活动的影响以及随后对土壤环境的条约和农业生产的可持续发展(Qin等人2021,朱等人。2021)。生物炭促进了微生物的生长,从而增加了它们的数量和丰度(Gou等人2018)。此外,碳(c)和硝基代(n)等生物炭中包含的营养对于增加多样性
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
生物炭对土壤质量的主要好处是通过增加可以保留养分并增加水位容量的活性表面积。我们需要更好地了解这些变量,然后才能广泛推荐对土壤的生物炭应用。例如,新鲜生产的生物牙齿是疏水性的,表面电荷较低,但是随着土地施加后的时间,生物炭的表面可以被氧化,从而更具反应性。因此,多年来可能无法实现将生物炭应用于土壤的全部好处。正在进行许多关于生物炭生产技术的研究以及生物产生的生物如何影响土壤特性和促成性。希望,我们将在不久的将来就生物炭申请提出建议。
Akio Enders康奈尔大学;国际生物炭倡议艾里森·弗林全球绿色能源解决方案公司布鲁斯·斯普林斯汀普拉斯县空气污染控制区丹尼尔·桑切斯加州大学,加利福尼亚大学,伯克利 /碳直接戴维·莫雷尔·索诺尔·索诺玛生态中心汉内斯·霍恩斯·埃特·南极南极洪堡 /沙特兹能源研究中心马特·拉姆洛世界资源研究所梅利莎·莱昂·盖卡(Melissa Leung GecaAkio Enders康奈尔大学;国际生物炭倡议艾里森·弗林全球绿色能源解决方案公司布鲁斯·斯普林斯汀普拉斯县空气污染控制区丹尼尔·桑切斯加州大学,加利福尼亚大学,伯克利 /碳直接戴维·莫雷尔·索诺尔·索诺玛生态中心汉内斯·霍恩斯·埃特·南极南极洪堡 /沙特兹能源研究中心马特·拉姆洛世界资源研究所梅利莎·莱昂·盖卡(Melissa Leung Geca
建造了一个原型移动热解单元(MPU),可通过贝拉德(Bailed)和其他生物质产生现场生物炭。在开始制造MPU之前,运营组为简化且具有成本效益的生物炭系统制定了初始设计理念和工程策略,该系统将结合一系列的设计约束。在制造和初始调试阶段发生了许多不同的工程步骤,并进行了进一步的调整,以帮助解决原料问题,并在测试和重新设计阶段提高MPU的功能。在设计修改以最大程度地提高冲刺的饲料之后,进料速率仍然低于设计要求,并且MPU连续有效地运行时存在问题。但是,MPU确实成功地运行了:当时的Rush Biomass Fed在没有阻塞的情况下连续通过系统;可以控制和维持速度管中的温度。它可能连续运行超过4个小时。在这些条件下,由适合在实验室设置中进行测试的高质量生物炭产生高质量一致的生物炭。随后使用欧洲生物炭证书指南来表征该生物炭的可持续生产生产,并在各种实验项目中进行了检查。
摘要:构建的湿地系统(CWS)是在物理和生物学上构造的系统,可以模拟天然湿地,可用于从几种污染源中处理废水。本评论旨在综合有关在基板中整合生物炭的湿地的更新文献。这项研究的重点是通常融入该治疗生态技术的生物炭特征以及通常使用的原料(污水污泥,农业废物和木材,食物废物和海洋原料)。生物炭质量受到制备这种生物炭的条件(热解温度,加热时间和速率等)的影响。还描述了用于废水处理的生物炭的特性,其实施对CW底物的影响及其治疗效率。几个因素改变了CWS中污染物的去除效率,例如底物化学和物理礼节,液压保留时间,氧合和氧化还原条件。此外,过滤器中的生物炭的实施水平和大型植物的选择对于治疗系统的效率至关重要。已经报道并进行了比较的不同配置,并进行了比较。建造的湿地(CWS)是构造的系统,可以模拟天然湿地,可用于通过物理,化学和生物学除发过程从几种污染来源处理废水。这项工作旨在批判性地回顾有关构造的湿地(CWS)在基板中整合生物炭的文献。详细说明,该研究的重点是通常融入该处理生态技术的生物炭的特征以及用于准备材料的过程,包括热转化的条件以及所使用的原料种类(例如,农业,食物,木质废物,木质废物,污水污泥,污水污泥和Argal Marine Marine Marine Marine Fudtsock)。基于文献综述,发现原料必须富含碳(C),而矿物质则必须较低才能产生优质的生物炭,即大孔体积和高比表面积,因此可以有效从废水中去除污染物。生物炭质量受到制备生物壳的条件的影响(例如,热解温度,加热速率和碳化时间)。也已经描述了用于废水处理的生物炭的特性,其实施为CW底物及其治疗效率的作用。几个因素改变了CWS中污染物的去除效率,例如底物化学和物理性质,液压保留时间,氧合和芦苇床中的氧化还原条件。另外,在过滤器中实现生物炭的模式和大型植物的选择对于调节治疗系统的效率至关重要。Phragmites Australis是先前研究中最常用的植物,因为它具有很大的优势。报告并比较了将生物炭集成到湿地中的CWS的不同构型,并进行了比较。在垂直流CWS(VF-CWS)中,该系统主要研究,几个
生物炭是一种地球化学稳定的可再生碳,通常颗粒尺寸较小,可用于产生永久性碳汇。IPCC 在其《2022 年气候变化缓解报告》2 中将生物炭确定为可持续的碳储存解决方案。科学界已经证明了生物炭永久储存生物碳的能力 3 。SOLER 生物炭可以储存 2.9kg CO2eq/kg 生物炭,并且已经在市场上销售,用于各种应用。