1 北京大学口腔医学院·医院口腔材料科,北京 100081;dandan66x@126.com (DX);yuanshenpo@163.com (SY) 2 口腔数字化医疗与材料国家工程实验室,国家口腔疾病临床研究中心,口腔数字医学与材料北京市重点实验室,国家药品管理局口腔材料重点实验室,卫生部数字化口腔工程与技术研究中心,北京 100081;drwangfeilong@126.com 3 北京大学口腔医学院·医院修复科,北京 100081 4 国家药品管理局医疗器械技术审评中心,北京市海淀区 100081;panshuo@cmde.org.cn * 通信地址:liuyunsong@hsc.pku.edu.cn (YL); xuyx@hsc.pku.edu.cn (YX)
引言当前,科学界将大量注意力集中在由可再生资源获得的材料上,特别是由天然聚合物及其衍生物获得的材料,例如壳聚糖、胶原蛋白和海藻酸盐。这对于生物医学中使用的材料尤其如此,因为需要保持生物相容性和抗菌性,例如组织工程的多孔支架或封装活性物质的基质 [1, 2]。因此,一个有前景的领域是研制用于透皮给药 ( TDL ) 的贴剂,当材料贴在患者皮肤上时,能够扩散到血液中 [3]。脱乙酰基几丁质衍生物壳聚糖是一种多糖,广泛用于制造生物医学材料,包括 TDL 材料,其形式为多孔海绵、微粒、水凝胶和薄膜 [4]。由壳聚糖制成的聚合物多孔海绵是一种特别方便的皮肤接触材料。矿物无机酸和一些有机酸被用作溶剂,用于将该聚合物加工成新形式的生物材料。生产多孔壳聚糖海绵的“经典配方”包括将壳聚糖(1-2 wt%)溶解在稀乙酸溶液(1-2 vol%)中,冷冻和冷冻干燥 [5]。尽管此类材料中的酸含量较低,但接触时皮肤可能会产生过敏反应。因此,开发加工这种聚合物的新方法并寻找新的溶解介质变得极为重要。
抽象背景:三重阴性乳腺癌(TNBC)是一种侵袭性肿瘤,其死亡率极高,由于缺乏有效的治疗靶标。作为与肿瘤发生和肿瘤转移相关的粘附分子,分化44(也称为CD44)在TNBC中过表达。此外,特定的透明质酸类似物,即壳聚糖寡糖(CO)可以有效地获得CD44。在这项研究中,设计了一个共涂层的脂质体,将光杀手(HPPH)作为660 nm光介导的光敏剂和Evofofosfamide(也称为TH302),为缺氧激活的前药。获得的脂质体可以通过荧光成像来帮助诊断TNBC,并通过协同光动力疗法(PDT)和化疗产生抗肿瘤治疗。结果:与非靶向的脂质体相比,靶向脂质体在体外表现出良好的生物相容性和靶向能力。在体内,靶向脂质体具有更好的荧光成像能力。此外,载有HPPH和TH302的脂质体比在体外和体内的其他单一疗法组表现出明显更好的抗肿瘤作用。结论:令人印象深刻的协同抗肿瘤效应,加上优质的荧光成像能力,良好的生物相容性和较小的副作用,使脂质体赋予了诊断和过表达癌症治疗的未来转化研究的潜力。关键字:三重阴性乳腺癌,光动力疗法,壳聚糖寡糖,CD44,脂质体
硅 (Si) 是电子工业中一种成功的活性材料。其特有的间接带隙限制了基于光发射的应用。然而,这种半导体最近因其纳米尺度上的新颖特性而引起了研究人员的关注,例如可调光致发光响应 [1]、低毒性 [2] 和生物相容性 [3]。自从室温下在多孔硅薄膜上发射以来,纳米结构硅的光致发光 (PL) 研究有所增加 [4]。硅量子点具有广泛的潜在应用;它们已被用于提高太阳能电池的效率 [5]、制造发光二极管 (LED) [6]、非线性光学和安全通信加密 [7]。根据多份报告,SiQD 具有延长的荧光寿命。这一特性在使用荧光生命成像显微镜 [8] 和生物成像 [9] 进行细胞成像时尤为有用。因此,这些硅量子点特性的融合为潜在的生物医学应用开辟了一条新途径。如今,硅纳米粒子通常被称为 SiQD。该主题的一个重大突破是将这些 SiQD 的发光与其尺寸和电子结构变化联系起来的报告;量子限制效应 (QCE) 与此现象有关 [10]。因此,最近对合成 SiQD 的新途径的研究有所增加;化学和物理方法是合成技术的核心分类。物理方法采用以下方法
随着对聚合物复合材料的研究,下一代吸附,分离和填充材料的发展正在增长。在这项研究中,壳聚糖(CS)和聚乙烯氧化物(PEO)纳米纤维的新型混合物在钛(TI)涂层的聚乙烯二甲甲甲甲酸酯(PET)tere-苯甲酸酯(PET)田径膜(TMS)上是通过glutarallaldey sepers the Vopersention the Vopersention the Vopersention the Vopersention the vope sepers的电气传播。交联。制备的复合钛涂层轨道蚀刻的纳米纤维膜(TTM-CPNF)的特征是傅立叶变换Infra-Red(FTIR),水接触角和扫描电子显微镜(SEM)分析。平均纤维直径为156.55 nm的光滑和均匀的CS纳米纤维是由从92 wt制备的70/30 CS/PEO混合溶液中产生的。%乙酸和静电弹性在15 cm针上,以0.5 ml/h流量的速率和TTM-CPNF上的30 kV施加的电压。短(15分钟)和长(72 h) - 期 - 溶解度测试表明,在3小时后,交联的纳米纤维在酸性(ph¼3),碱性(pH¼13)和中性(pH¼7)溶液中稳定。基于淡水甲壳类动物麦克尼亚(Daphnia)的低死亡率,交联的TTM-CPNF材料是生物相容性的。被证明是由电源纳米纤维和TMS组成的复合膜被证明是生物相容性的,因此可能适用于在水处理中的双重吸附效率系统等多种应用。©2020 Elsevier Ltd.保留所有权利。
储能装置用石墨烯由于制备方法和质量缺陷,阻碍了其进一步广泛应用。本文,我们报道了一种简便且经济有效的方法,从生物相容性壳聚糖中提取三维多孔石墨烯(3DPG)并进行大规模生产。利用3DPG的大表面积、优异的电导率和高电化学活性,通过在商用DLC301有机电解质中耦合两个3DPG电极,实现了先进的对称超级电容器(3DPG//3DPG SCs)。该装置在10 mV s-1的扫描速率下可提供168.9 F g-1的显著电容,并显示出优异的倍率能力,在10到100 mV s-1的范围内电容保持率为81.5%。此外,3DPG//3DPG SCs表现出突出的循环耐久性,10,000次循环后电容仍为96%。这项工作可能为石墨烯在工业层面的高效储能应用提供启示。
摘要 氧化石墨烯 (GO) 涂层电极为酶促葡萄糖传感提供了极好的平台,这种传感是由葡萄糖氧化酶和电化学转导引起的。本文中,我们表明,将 GO 与壳聚糖 (GO + Ch) 混合后,GO 层对葡萄糖检测的灵敏度会加倍,如果利用壳聚糖与 GO (GO−Ch) 的共价结合,灵敏度会增加八倍。此外,复合材料 GO−Ch 的电导率适用于电化学应用,而无需 GO 还原,而这通常是 GO 基涂层所必需的。通过标准羧酸活化/酰胺化方法利用壳聚糖丰富的氨基侧链实现 GO 的共价改性。通过与使用未活化 GO 作为前体实现的临时合成对照样品进行比较,证明了功能化的成功。复合材料 GO−Ch 通过滴铸法沉积在标准丝网印刷电极上。与壳聚糖-GO 混合物和纯 GO 相比,结果表明,由于酶结合位点数量多和羧酸活化合成步骤中 GO 的部分还原,葡萄糖电化学响应具有更高的可靠性和效率。