人为引起的营养富集水体富集了过多的氮(N)和磷(P)是美国面临的最普遍的环境问题之一(美国EPA,2015a)。在许多分水岭,市政和工业废水处理厂(WWTPS)可以是营养的主要来源。最新的努力来得出数字营养标准来保护水体的指定用途,这导致了限制,对于美国大多数WWTP而言,使用目前进行的治疗配置可能会遇到挑战。但是,许多利益相关者都担心与升级治疗配置有关的不良环境和经济影响可能存在明显的不良环境和经济影响,因为这些配置可能需要更多地使用化学品和能量,释放更多的温室气体,并产生更多的处理残留物来处置。
摘要:本文提出了一种线性参数变化 (LPV) 框架中的经济模型预测控制 (EMPC) 策略,用于控制污水处理厂 (WWTP) 曝气反应器中的溶解氧浓度。复杂非线性工厂的简化模型以准线性参数变化 (qLPV) 形式表示,以减少计算负担,实现实时操作。为了便于制定作为系统状态函数的时变参数以及用于反馈控制目的,提出了一种使用 qLPV WWTP 模型的移动范围估计器 (MHE)。基于 ASM1 模拟基准对控制策略进行了研究和评估,以进行性能评估。将 EMPC 策略应用于西班牙赫罗纳 WWTP 曝气系统的控制,所获得的结果证明了其有效性。
神经化学变化在精神分裂症病因中的作用非常突出。这些神经化学变化与四个化学伴侣有关。这些是多巴胺能,血清素能,谷氨酸能和去甲肾上腺素能系统。中该疾病形成的最广泛接受的思想,精神分裂症是由多巴胺传播和代谢的平衡障碍引起的,这导致多巴胺能功能的增加。称为异型抗精神病药的新药物的作用表明,血清素能系统在精神分裂症的病因学中也起作用。羟色胺假说中的精神分裂症已被提出,在新的命名至5-羟色胺受体中敏感性的提高是导致精神分裂症的某些症状的原因。 灵敏度的这种增加可能与中央5-羟色胺功能的降低有关。 被认为每个神经递质系统中可能的疾病并非彼此独立,被认为与两个系统之间的动态相互作用有关。羟色胺假说中的精神分裂症已被提出,在新的命名至5-羟色胺受体中敏感性的提高是导致精神分裂症的某些症状的原因。灵敏度的这种增加可能与中央5-羟色胺功能的降低有关。被认为每个神经递质系统中可能的疾病并非彼此独立,被认为与两个系统之间的动态相互作用有关。
该国的缺水值保证从废水处理厂回收和再利用经过处理的水。废水在废水处理厂中需要特定于污染物的处理。有效的操作,维护,绩效和废水处理厂需要适当的计划和训练有素的人力。大型工业通过建造和有效运营废水处理厂来管理其废水。但是,由于空间,财务和熟练的人力限制,小型行业经常发现很难建造和操作适当的容量废水处理厂。因此,污水处理厂(STP)和普通废水处理厂(CETP)为均质和异质行业集群提供了集中式平台,以应付的基础处理废水。在处理厂的废水处理现已成为产生重要收入的重要收入,一种回收水的资源,保护环境和影响整个生活质量的过程。但是,废水处理厂的运营是一个棘手的事情,因为收到的废水是多种多样的。因此,该计划是专门为参与者进行操作,维护,管理和浪费水处理厂的培训和指导而设计的,并且可以扩展以在ETP中最佳地管理废水。
摘要:考虑到令人担忧的水资源短缺问题,必须采用更高效的废水处理技术。废水可以通过传统的生物过程处理,去除病原体、颗粒和可溶性有机化合物以及其他成分。然而,处理厂的二级废水可能仍然含有有毒元素或高浓度的无机营养物(主要是氮和磷),这使得光合微生物在水体中生长,导致水体富营养化。在这种情况下,在污水处理产生的二级废水中培养光合微生物可以去除这些废水中的营养物,降低水体富营养化的可能性。此外,在这种三级废水处理中产生的微藻生物质可以通过不同的方法收获,并有可能用于不同的应用,例如肥料和生物燃料。
©2021 Elsevier Ltd.此手稿版本可根据CC-BY-NC-ND 4.0许可(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)提供。
气候变化是当今全球问题。气候变化的主要原因之一是温室气体,自工业革命以来,其数量一直在增加(Clabeaux等,2020;Coşkun&Doğan,2021年)。据指出,对温室气体排放贡献最大的活动是私人部门(铁或钢的生产和水泥熟料的生产等。),众所周知,诸如焚化厂和水处理厂等公共设施释放了大量的温室气体(Bani Shahabadi等,2009)。最近,众所周知,水处理厂消耗了大量的电力和化学物质,导致了大量的CO 2排放(Rothausen&Conway,2011年)。尽管饮用水处理厂的CH 4和N 2 O比废水处理厂的排放量要小得多,但每年的温室气体排放量不能忽略(Kyung等,2013)。在不久的将来,治疗厂可能会严格受到方案的监管和控制。因此,必须迅速减少水处理厂的CO 2排放。
摘要:合成化学表面活性剂(SCSS)是从化石燃料前体合成的一组用途的两亲性化学物质量,这些化石燃料前体已在各种工业应用中发现使用。它们的全球用法估计每年超过1500万吨,这导致环境破坏和对人类和其他生物的潜在毒理学影响均未减弱。当前的社会挑战以确保环境保护并减少对有限资源的依赖,导致人们对可持续和环保替代品(例如生物性活性剂)的需求增加,以取代这些有毒的污染物。生物表面活性剂是可生物降解,无毒的,并且通常在环境上兼容的两亲性化合物。尽管微生物生物表面活性剂替换SCSS的潜力巨大,但与SCS相比,限制其商业化的主要挑战限制其商业化的收益率和生产成本的大量成本。在这篇综述中,我们讨论了SCSS的释放,废水处理厂(WWTPS)是其释放到海洋的主要点来源,然后我们深入研究了这些污染物对海洋生物体和人类的后果。然后,我们探索微生物生物表面活性剂作为SCSS的替代品,重点是鼠尾草脂质,并以对当前和未来的工作进行商业化微生物生物性生物性侵蚀剂的一些观点结束。
MevaGrit 清洗机和 MevaGrit 分类器旨在为市政和工业废水处理厂提供高效去除和分离沙子和矿物颗粒的功能。Nordic Water 的 MevaGrit 解决方案是一系列废水处理设备的一部分,旨在优化水处理厂的供水管网性能。根据多年来在世界各地安装的经验,这些砂砾处理系统对于污水处理厂以及造纸厂管理沙子、树皮和金属污染物来说是必不可少的。