产品概述Murata提供21英寸OCP机架可安装的电池备用解决方案,以支持高可靠性体系结构。MWBBES-212-B-1为UP六(6)3kW电池备用单元(BBU),远程管理单元(RMU),电池控制单元(BCU)和辅助BOAD(AUX)提供了用于在OCP系统中部署OCP Systems和其他分布式体系结构应用程序,需要高度可靠的能源存储解决方案的运输系统。BBU适应了先进的电池技术,与传统的铅酸电池解决方案相比,重量要低得多,从而降低了总拥有成本。
GB300/GB300A服务器规格设置为更改。 我们认为即将到来的GB300/300A服务器将以3Q25E的质量生产为特色。 关键更改包括:1)LPDDR CAMMS和GPU插座:GB300将采用LPDDR CAMM和GPU插座来降低GPU失败成本和供应链风险。 2)X86 CPU替代方案:服务器将合并X86 CPU替代方案,该替代方案仍需要PCI-E接口。 3)增加机架功率消耗:每个机架的总功耗将增加到130-140kW,而B300服务器的功率为1.4kW(B200为1.2kW)。 4)可选的电容器机架和BBU:GB300/GB300A服务器可以选择采用电源电容器机架和电池备用单元(BBU)。 5)灵活的组件供应商:GB300/GB300A服务器将在组件供应商选择方面具有更大的灵活性。GB300/GB300A服务器规格设置为更改。我们认为即将到来的GB300/300A服务器将以3Q25E的质量生产为特色。关键更改包括:1)LPDDR CAMMS和GPU插座:GB300将采用LPDDR CAMM和GPU插座来降低GPU失败成本和供应链风险。2)X86 CPU替代方案:服务器将合并X86 CPU替代方案,该替代方案仍需要PCI-E接口。3)增加机架功率消耗:每个机架的总功耗将增加到130-140kW,而B300服务器的功率为1.4kW(B200为1.2kW)。4)可选的电容器机架和BBU:GB300/GB300A服务器可以选择采用电源电容器机架和电池备用单元(BBU)。5)灵活的组件供应商:GB300/GB300A服务器将在组件供应商选择方面具有更大的灵活性。
• 如果温度警报反复响起,请不要断开警报,直到确定原因为止 • 检查基本情况(电源、单元门、DDL 位置、恒温器设置等) • 如果存储单元发生故障或不稳定,请实施疫苗存储和处理协议,将疫苗运送到备用单元。 如果设施内有其他存储,请将疫苗转移到该单元。 如果没有,请联系备用设施,通知他们冰箱/冰柜发生故障,需要将疫苗存放在备用位置。 温度超调后,请勿让疫苗留在无法正常工作的单元中。 • 如果将疫苗转移到备用存储单元,请验证主存储单元是否正常运行,并且温度在范围内,然后再尝试将任何疫苗移回。 新安装或维修的冰箱可能需要两到七天才能稳定温度,而冰柜则需要两到三天才能稳定温度。 一旦连续两天的温度记录在建议范围内,该单元就稳定了,可以使用了。 按照疫苗运输程序将疫苗转移回主单元。
摘要——如今,直流微电网在可再生能源领域受到青睐。自主直流微电网旨在提供从可再生能源到负载的平稳电力流动。在满足某些负载曲线并将功率维持在所需水平的同时,对功率转换器的控制也非常重要。为了提高直流微电网的弹性,电池存储系统 (BSS) 也被用作提供不间断电源的备用单元。BSS 的主要任务是在负载高于供电功率时补偿功率不足,或在负载需求低于提取功率的情况下存储多余的功率。换句话说,通过消耗和存储电力,BSS 有助于提高系统的灵活性并将主直流母线电压保持在可接受的范围内。本研究引入了基于人工智能 (AI) 的方法来减少实施的传感器数量并控制功率转换器而不会降低效率。在本文中,利用了作为 AI 子集的人工神经网络 (ANN)。减少控制层中的传感器数量使系统更加可靠。为了验证所提系统的有效性,在 MATLAB/Simulink 中进行了离线和在线时域仿真。
•功率供应单元(PSU)。开放计算项目的变化正在增加48V输出的普及;但是,与以前的溶液相比,所需的80V和100V硅溶液的损失(门驱动和重叠损失)明显更高。GAN溶液(例如LMG3100)可以帮助最大程度地减少电感 - 电感 - 伴随阶段(LLC阶段)的同步整流器中的这些损失。•中间总线转换器(IBCS)。此系统将中间电压(48V)从PSU的输出转换为较低的电压,然后将其转换为服务器。随着48V电压级别流行,IBC有助于减少服务器子系统分布期间的I 2 r损失,并启用总尺寸和成本降低总线杆和携带电源的电线。IBCS的缺点是,它们为电源转换增加了另一个步骤,这可能会降低效率。因此,除了OEM正在测试高效率和功率密度的最佳组合外,还要利用高效gan设备(例如LMG2100和LMG3100)等高效GAN设备。•电池备用单元。降压阶段通常将电池电压(48V)转换为总线电压(48V)。当电源线路熄灭并且功率流是双向时,您也可以使用BBU进行电池电源转换。不间断的电源使用此阶段,因为它可以通过直接从电池直接执行DC到DC转换来避免由DC到AC-AC-TO-DC转换造成的损失。
•765 KV ICT Bays - 2号•400 kV ICT Bays - 2号•400/220 KV,500 MVA,ICT - 2号•400 kV ICT Bays - 2号•220 KV ICT Bays - 2号•765 KV线湾 - 2号(在Koppal-II上用于终止Koppal-II-Narendra(新)765 kV d/c线)•220 kV线湾 - 4个nos。•220 kV巴士耦合器(BC)湾–1号•220 KV转移总线耦合器(TBC)湾 - 1号未来空间规定:(包括阶段B的空间)•765/400 kV,1500 MVA,ICT - 5号•765 KV ICT Bays - 5号•400 kV ICT Bays - 5号•400/220 KV,500 MVA,ICT - 10号•400 kV ICT Bays - 10号•220 KV ICT Bays - 10号•765 KV线湾 - 8号(提供SLR的提供)•400 kV线湾 - 14个编号(提供SLR的提供)•220 kV线湾 - 12号•220 kV总线分级器:3套•220 kV巴士耦合器(BC)湾 - 3号•220 kV传输总线耦合器(TBC)湾 - 3号•400 kV总线分级器:1集A2 Koppal-II PS - Narendra(New)765 kV d/c线,在Koppal-ii ps End in 240 mvar slr,•765 kV线•2 nos。(gis)[在narendra(new)]•765 kV,240 mvar slr在koppal-ii ps - 2号(7x80 MVAR,包括1个可切换单元)A3 2x330 MVAR(765 kV)和2x125 MVAR(400 kV)在Koppal-II PS处的总线反应堆•765 kV,330 MVAR BUS反应堆 - 2 NOS。(7x110 MVAR,包括1个可切换备用单元,用于总线反应堆和线反应堆)•765 kV总线反应堆托架 - 2号。•420 KV,125 MVAR总线反应堆 - 2号•400 kV ICT Bays - 2号•220 KV ICT Bays - 2号•420 kV,125 MVAR总线反应堆托架 - 2号A4建立400/220 kV,2x500 mva gadag -ii(阶段-a)池站•400/220 kV,500 mva,500 mva ICTS - 2nos。•400 kV线湾 - 2号(在Gadag-II上,用于终止Gadag-II - Koppal-II线)•220 KV线湾 - 4个No.