■ 所有标准和出版物 ■ 标准产品 ■ 研讨会论文和 STP ■ 手册、专著和数据系列 ■ 技术报告 ■ 期刊 ■ 阅览室 ■ 作者
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
生成AI在纳米复合材料的开发中的整合通过实现量身定制的功能彻底改变了该领域。这种创新方法利用机器学习算法设计和优化具有特定特性的纳米复合结构。通过生成纳米复合构型的庞大虚拟库,生成的AI加速了具有增强的机械,热和电气性能的新型材料的发现。本摘要概述了生成AI驱动的纳米复合材料设计中最新的最新概述,强调了其改变能源,航空航天和生物医学等行业的潜力。我们探索了这个新兴领域的挑战和机遇,强调了生成AI在纳米复合材料中解锁前所未有的功能的潜力。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
菌丝体结合复合材料是一类新型可持续且价格实惠的生物复合材料,最近被引入包装、时尚和建筑领域,作为传统合成材料的替代品。近年来,人们进行了广泛的调查和研究,以探索菌丝体结合复合材料的生产和加工方法以及寻找其潜在应用。然而,这种新型生物复合材料在建筑行业的应用仅限于小规模原型和展览装置。机械性能低、吸水率高以及缺乏标准生产和测试方法等问题仍然是菌丝体结合复合材料用作非结构或半结构元素时需要解决的主要挑战。这篇简短的评论旨在展示菌丝体结合复合材料在建筑领域的应用潜力,包括隔热和隔音以及替代干式墙和瓷砖。本综述总结了有关建筑领域使用的菌丝体结合复合材料的特性的主要可用信息,同时提出了未来研究和开发这些生物复合材料在建筑行业应用的方向。
将信息之间的信息(指示或无向)链接。sig1 = ml-dsa.sign(m ||“也存在ED25519 SIG”); sig2 = ed25519.sign(M ||“也存在ML-DSA SIG”); •是一个模式。•旨在根据
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。 需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。 太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。 在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。 使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。 太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。 PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。 要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。
注意 本文件由美国运输部赞助发布,旨在促进信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。