•设计和选择材料•实验室,产品,测试和材料测试•使用纳米结构材料生产,用于复合材料和技术聚合物•生产复合材料的原材料•生产具有各种矩阵的复合结构零件的原材料(聚合物,陶瓷,混合和金属制造材料和多种材料)•技术生产•技术生产•技术的原始材料•技术材料•构造技术材料的生产树脂,延长剂,添加剂,染色产品等。•生产结构胶粘剂和密封剂的原材料•增强纤维以及天然和合成技术织物•各种类型的预先浸渍的技术
三明治复合材料的概念是为了调整材料的强度和特定特性以获得量身定制的性能,但经常以多种模式恢复和应用。自然通常会应用它,在确保保护和柔和的核心的外骨骼之间进行了鲜明对比,允许各种动作,包括明智的流体传播,因此暗示着对整个系统的环境控制。尽管对适应性材料的开发是一种原始思想,但夹心复合材料越来越多地修饰和复杂,以增强其耐用性和功能的功能。这是该研究主题被构思的意义:查看对屏蔽皮肤和功能性核心之间这种二项式联系的某些研究主题的事实响应。这是收集的作品反映的,这确实代表了将自然概念与特定研究主题相关的需要,这些研究特定于三明治复合材料的性能。经常用作材料开发灵感的自然结构之一是贝壳,尽管它们的弯曲和分层结构更具体地提供了保护,同时阻碍了裂纹的繁殖。在Hu等人的工作中建立在此模型上。 分层的半导体结构确实通过基于氧化石墨烯和硫化钼的组装来通过提高换能器传感器的性能来实现刺激反应。在Hu等人的工作中建立在此模型上。分层的半导体结构确实通过基于氧化石墨烯和硫化钼的组装来通过提高换能器传感器的性能来实现刺激反应。真空吸力过滤允许尽可能多地重现生物壳的高韧性行为,以降低效果
本演讲包括1933年《证券法》第27A条的含义和1934年《证券交易法》第21E条的“前瞻性陈述”。这些前瞻性陈述包括有关我们的计划,目标,策略,未来事件,未来收入或绩效,资本支出,融资需求,计划或意图,与收购,剥离或战略交易,业务趋势以及任何其他不是历史信息有关的信息。在此演示文稿中使用时,“估计值”,“期望”,“预期”,“可能”,“项目”,“ Outlook”,“ Outlook”,“计划”,“计划”,“打算”,“相信”,“预测”,或未来或条件动词,例如“ WILL”,“ WILL”,“应该”,“可能”或“ May”或“可能”或“可能”或类似的表达方式,以识别这些词或类似的表达。这些前瞻性的陈述,包括管理层对历史运营趋势和数据的检查,基于我们当前的期望以及各种假设和信念。尤其是,这种前瞻性陈述会遭受不确定性和环境变化的影响,并涉及可能影响公司运营,市场,产品,价格和其他因素的风险和不确定性。在我们的年度报告中,应考虑到标题为“风险因素”的风险,截至2023年12月31日止年度的年度报告中,应考虑任何前瞻性陈述,这些陈述应在2023年12月31日止年度的年度报告中得到补充,这些风险可能会在该公司不时提交或提供的任何后续报告中披露的其他风险和不确定性。巨大的风险和不确定性可能与欧洲的能源成本增加但不限于增加资本成本,高资本成本,地缘政治不稳定,全球经济状况,周期性和波动性产品市场,制造设施的生产破坏,重新组织的生产,重组或重组,包括对公司的运作的影响,包括对公司的运作,包括对任何延迟产生延迟,并促进延迟,并促进延迟的效率,并促进延迟,并促进延迟,并促进延迟,并促进延迟的成本,并影响延误,对公司业务的优化改进,并实现预期的成本节省,以及其他财务,运营,经济,竞争,环境,政治,法律,法规和技术因素。所有前瞻性语句仅适用于制作日期。除法律要求外,公司没有承担更新或修改前瞻性陈述的义务,以反映在制作日期或反映意外事件发生之后出现的新信息,事件或情况。非GAAP财务指标
摘要:本研究旨在研究纤维增强对混合聚合物基质复合材料的机械性能的影响。由杂化聚合物复合材料制成的样品是由两种聚合物,90%环氧树脂和10%溶解树脂的反应制成的,并用两种类型的增强剂加固。用于当前研究的增强型是碳和凯夫拉纤维。纤维在平淡的编织中,并以体积分数添加。这项研究评估了两种情况下的机械特性,例如拉伸强度,硬度和冲击强度:一种仅用于环氧树脂/恢复混合物,另一个用于混合复合材料。添加纤维钢筋可改善环氧树脂的机械性能。kevlar纤维在用两层凯夫拉纤维加固时,为环氧/恢复混合物提供了最佳的机械性能。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
Abstract ........................................................................................................................... xxvi
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。
图4:SE材料对缺陷指标的弹性特性的影响。X轴代表SE Young的模量,不同的曲线代表不同的SE屈服强度。绿色区域是硫化物型SE的杨氏模块(E SE),黄色区域用于氧化物型SE。选择具有较小𝐸()和s的SE材料;可以最大程度地减少机械缺陷。
将信息之间的信息(指示或无向)链接。sig1 = ml-dsa.sign(m ||“也存在ED25519 SIG”); sig2 = ed25519.sign(M ||“也存在ML-DSA SIG”); •是一个模式。•旨在根据
在硬胶囊的形成中,来自海藻的抽象角叉菜趋于脆弱。在这项研究中,合成了基于角叉菜胶的生物复合材料,为明胶硬胶囊提供了替代方案。这项研究旨在表征碳胶胶生物复合材料的机械性能,其氯化胆碱(CHCL)和甘油含有深层溶剂(DES)。Cargageenain生物复合材料以不同的浓度(0、0.2、0.4、0.6、0.8和1.0 v/v%)的形式配制,以提高角叉菜胶生物复合膜和硬胶囊的强度和弹性。在1348cm⁻⁻处的CHCL带不存在Chcl带,而在DES的Atr-FTIR光谱中,C – O甘油带的强度降低被视为形成共晶混合物的证据。这可以通过DES成分之间的氢键供体和受体相互作用来解释,DES成分是Chcl的氯离子(Cl-)和甘油(Cl - ··OH)的羟基(–OH)的氯离子(Cl-)。在504.9 MPa时,Carra-DES 0.2的最高粘度反映了高达60.1 MPa的改善膜拉伸强度,在添加DES后产生了积极的效果。CARRA-DES 0.4的胶囊环强度在31.7 n处达到其峰值。观察到Carra-DES薄膜中断时的伸长率显着增加,DES浓度为0.2-0.6%。但是,应控制DES的浓度以在硬胶囊应用中实现高拉伸和环的强度。总而言之,在角叉菜胶生物复合材料中掺入DES可以降低其脆性,同时改善其在硬胶囊生产中的弹性和强度。关键词:生物复合材料,角叉菜胶,胆碱氯化物,深晶溶剂,增塑剂