僵硬与韧性之间的冲突是工程材料设计中的基本问题。,从未证明过具有最佳刚度阻止权衡取舍的微观结构化合物的系统发现,这受到模拟与现实之间的差异以及对整个Pareto阵线的数据有效探索之间的差异的阻碍。我们引入了一条可推广的管道,该管道将物理实验,数值模拟和人工神经网络集成以应对这两个挑战。没有任何规定的材料设计专家知识,我们的方法实现了嵌套循环提案验证工作流程,以弥合模拟到现实差距,并找到微观结构化的复合材料,这些复合材料僵硬而坚硬,具有较高的样品效率。对帕累托最佳设计的进一步分析使我们能够自动识别现有的韧性增强机制,这些机制以前是通过反复试验,错误或仿生物质发现的。在更广泛的规模上,我们的方法为除固体力学外的各种研究领域(例如聚合物化学,流体动力学,气象学和机器人学)提供了计算设计的蓝图。
制造了抽象的高密度聚乙烯(HDPE)基于基于三种不同类型的石墨烯纳米纤维素(GNP)的纳米复合材料(GNP),以研究GNP的尺寸效应,以横向大小和厚度对形态,热,电气和机械性质的侧向尺寸和厚度。结果表明,GNP的包含增强了基于HDPE的纳米复合材料的热,电和机械性能,而不论GNP大小如何。然而,使用较大的侧向大小的GNP实现了热导电和最低电渗透阈值的最显着增强。这可能归因于以下事实:较大的侧向尺寸的GNP在HDPE中表现出更好的分散体,并形成了在扫描电子显微镜(SEM)图像中易于观察到的诱导途径。我们的结果表明,与其厚度相比,GNP的横向大小是上述纳米复合材料的更调节因素。对于给定的侧向尺寸,较薄的GNP显示出明显更高的电导率,并且渗透阈值低于较厚的电导率。另一方面,就热导率而言,仅在某个填充浓度上方观察到了显着的增强。结果表明,与其他相比,由于分散度较差,横向尺寸较小且厚度较大的GNP会导致样品机械性能的增强。另外,GNP的尺寸对HDPE/GNP纳米复合材料的熔化和结晶特性没有相当大的影响。
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
对热塑性复合材料的需求不断增加,因为这些材料在热固性工具中具有许多优势,例如高韧性,较长的存储时间,易于修复和回收,以及具有热成型和热量焊接的能力。但是,使用液体复合成型技术制造热塑性复合零件(例如树脂转移成型,真空辅助树脂转移成型。。。 )在熔融加工的情况下通常很棘手,在熔体过程中,由于热塑性塑料的高融化粘度,因此应选择高温和压力以浸渍纤维增强。可以通过反应性处理来克服这些问题,而低粘度单或寡聚前体首先浸渍了纯净的预成型,而热塑性基质的聚合则发生在原位。本文绘制了关于连续纤维增强基于丙烯酸的反应性热塑性塑料制造特征的最新技术(例如聚合甲基丙烯酸酯(PMMA)(PMMA)越来越流行。技术的甲基丙烯酸酯单体的原位聚合技术,流变特性和聚合动力学的表征和建模以及一些与制造相关的问题(例如聚合收缩)进行了综述。还引入了连续钢筋复合材料和潜在工业应用的不同制造技术中使用反应性PMMA的特定特征。最后,提出了学术研究和工业发展的一些观点。
DMAC研究小组在应对高性能和可持续综合制造领域的复杂挑战方面处于最前沿。DMAC多学科致力于开发开创性的新解决方案,这些解决方案无缝地整合了尖端的材料科学,复杂的制造过程和创新思维。DMAC研究涵盖了复合材料的整个生命周期,从可持续材料开发到先进的制造工艺以及有效的寿命终止管理,通过回收。拥抱数字时代,我们将行业4.0技术整合到我们的制造过程中,以提高精确度,质量控制和可扩展性。敏锐地关注成本效益,我们努力平衡高性能要求和效果和可及性。我们致力于开发多功能复合材料,以及将数字化位置的整合作为领导者,以寻求复合制造业中的可持续解决方案。应用区域
本期题为“基于碳的聚合物纳米复合材料:制备,表征和应用,第二版”,旨在形成一系列高质量的原始/评论论文的集合,重点介绍了最新进度和新制剂,并在碳基聚合物纳米复合材料中应用新的准备工作,包括(包括(a)(a)(a)碳材料的合成和表面修饰的碳材料; (b)在聚合物基质中量身定制的碳材料大小,浓度和方向的控制; (c)碳材料与聚合物基质之间的界面性质控制; (d)评估聚合物基质中碳材料的分散状态; (e)以及使用碳基聚合物纳米复合材料和各种纳米复合材料的新应用的开发。
这项工作探讨了用于光学传感和光子技术的发光玻璃材料和复合材料的设计,合成和应用。该研究的重点是使用适合纤维图的氧化物玻璃基质(例如校尿石和磷酸盐玻璃)来开发新型的光学活性材料,这些玻璃是经过修改以改善其光学和热性能的。引入网络修饰符,尤其是氟化物,导致具有透明度和适当化学稳定性的玻璃系统。这些矩阵用稀土离子(RE 3+)和纳米颗粒掺杂,它们还用作发光配位聚合物(LN-CP)生长的底物,从而使新玻璃@LN-CP复合材料产生具有化学传感潜力的重要潜力。采用系统方法来使用诸如X射线衍射(XRD),拉曼光谱,固态核磁共振(NMR)和吸收光谱的技术来表征这些玻璃基质,从而提供了对其结构,光学,光学和热特性的见解。与RE 3+共掺杂的光学活性磷酸盐玻璃的合成证明了促进上转换(UC)发光的能力,突出了它们的光子应用潜力。这项研究还强调了玻璃@LN-CP复合材料的发展,该复合材料通过玻璃基板和光纤上的原位生长合成。这些复合材料对丙酮和2-戊酮等羰基化合物表现出强烈的发光响应,证明了它们的化学传感潜力。此外,涂层的光纤可以在长距离内传输发光信号,从而促进了分析物的实时和远程检测。因此,本文有助于开发新的发光材料和基于光纤的传感器,为创新的光学传感器和光子设备提供了多功能平台。
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
自多年以来,对基于聚合物的纳米复合材料进行了积极研究,尤其是因为它们可能具有不可用的特性组合。实际上,在这类材料中,其中一些已经使用了很长一段时间,例如汽车行业中的碳黑色橡胶。但是,仍然仅分析了一种众所周知的非线性行为,例如“ payne” [1]或“穆林斯” [2]效应。更一般地观察到了几种效果,其中大多数是极高的界面区域(数百m 2 /g材料)的结果,并且是加固填充剂表面之间非常短的差异。此外,几年前,[3]我们表明可以观察到剧烈的重新输入效果,但此效果也密切取决于材料处理步骤。出于这个原因,本研究的一部分集中在颗粒渗透的效果上,尤其是当它们比矩阵更僵硬时。Four main routes were explored, (i) the study of the percolation effect on the linear mechanical properties, [4] (ii) the study of non linear behavior below the glass rubber transition temperature Tg of the matrix, [5, 6] and above it (rubbery state), [7] (iii) the percolation itself through the electrical conductivity of modified fillers [8] dispersed in a
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。