。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 2 月 3 日发布了此版本。;https://doi.org/10.1101/2024.02.02.578725 doi:bioRxiv 预印本
Withania Somnifera是一种著名的药用植物。它通常被称为Aswagandha。这种植物已在阿育吠陀和Unani医学中使用了很长时间。药用植物具有巨大的药用特性。该植物富含有效的药物植物复合。已知这些植物复合具有有效的抗氧化剂,抗病毒,抗菌和免疫调节效率。我们的免疫系统是反击我们对我们的任何病原体攻击的关键参与者。withania somnifera提取物和来自植物的某些孤立的植物化合物已知可以增强我们的免疫系统。研究表明,来自withania somnifera的生物活性植物复合的免疫调节作用机制是通过影响各种细胞信号通路。这些主要涉及与存在于树突状细胞,T细胞和B细胞等重要免疫细胞上的受体相关的信号通路。因此,Withania的某些化合物抑制或激活了先天和适应性免疫系统的某些成分。与合成佐剂不同,天然植物衍生的植物化合物及其衍生物(如Withaia sp。没有这种风险因素。强大的免疫系统是抗击细菌和SARS-COV-2等病毒等微生物的入侵的最佳所有权。对Withania sp的化合物的详细和紧凑的知识。及其调节和影响我们的免疫系统的机制可能会为几乎所有不同类型的疾病(包括COVID 19。关键字:Aswagandha; withania somnifera;免疫调节;副作用;免疫系统
总结POU2F3-POU2AF2/3(OCA-T1/2)转录因子复合物是簇状细胞谱系和簇状细胞样小细胞肺癌(SCLC)的主调节剂。在这里,我们发现SCLC(SCLC-P)的POU2F3分子亚型表现出对哺乳动物开关/不可发酵(MSWI/SNF)染色质重塑复合物的活性的精致依赖性。SCLC-P细胞系对MSWI/SNF ATP酶蛋白水解靶向降解剂的纳摩尔水平敏感。pou2f3及其辅助因子与MSWI/SNF复合物的组件相互作用。POU2F3转录因子复合物在MSWI/SNF ATPase降解时从染色质中驱逐,从而导致SCLC-P细胞中下游致癌信号传导的衰减。一种新型的,可生物利用的MSWI/SNF ATPase Protac Degrader,AU-24118,相对于SCLC-A亚型,SCLC-P中表现出优先效率,并且在旋界模型中显着降低了肿瘤的生长。AU-24118没有改变肺或结肠中正常的簇状细胞数,也没有在小鼠中表现出毒性。b细胞恶性肿瘤对POU2F1/2辅助因子POU2AF1(OCA-B)的依赖性也对MSWI/SNF ATPase ATPase降解非常敏感。从机械上讲,在多个骨髓瘤细胞压实的染色质,移位POU2AF1和IRF4的MSWI/SNF ATP酶降解器处理中,并降低了IRF4信号传导。与POMALIDOMIDE相比,在POU2AF1依赖性的多发性骨髓瘤的鼠模型中,AU-24118增强了生存率,Pomalidomide是多发性骨髓瘤的批准治疗。综上所述,我们的研究表明,POU2F-POU2AF驱动的恶性肿瘤对MSWI/SNF复合物具有内在的依赖,代表了治疗性脆弱性。关键字POU2F3,POU2AF1/2/3,MSWI/SNF复合物,Smarca2/4,蛋白水解靶向嵌合体(Protac),小细胞肺癌(SCLC),多发性骨髓瘤,IRF4,IRF4
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
由于经济发展的加速,世界的总能源消耗正在迅速增加,并且已经预测,到2050年需求将达到25多个TW [1]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。 此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。 科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。 后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。 在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。 这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。 由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。 在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。 电解器也受到使用昂贵的电极的限制[6]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。电解器也受到使用昂贵的电极的限制[6]。PV产生的能量可以暂时存储到Li-Batties中,但也可以用于创建高价值产品。使用我们可以使用的技术,建立高密度的能量分子键可能是最有效的方法。例如,3千克氢产生100 kWh的化学能,而450千克锂离子电池可以提供相同量的能量[5]。PV可以在电解层中将水分成O 2和H 2的偏置,但是需要多个连接来满足所需的过电球。可以通过使用光电化学细胞(PEC)来解决这些局限性,该设备能够由于水分解,有机氧化而获得可存储的太阳能燃料(例如卤素氧化,形成,新的C-C-C
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
在有丝分裂过程中拆除了保护和组织基因组的核包膜。在秀丽隐杆线虫合子中,父母原核的核包络崩溃(NEBD)在有丝分裂过程中是空间和节气调节的,以促进母体和父亲基因组的统一。核孔复合物(NPC)拆卸是NEBD的决定性步骤,对于核通透性至关重要。通过结合实时成像,生物化学和磷蛋白质组学,我们表明NPC拆卸是一个逐步的过程,它可以将类似polo的激酶1(PLK-1)(PLK-1) - 依赖性和独立步骤。plk-1靶向多个NPC子分类,包括细胞质丝,中央通道和内环。PLK-1被募集到并磷酸化几种多价接头核孔蛋白的内在无序区域(IDR)。值得注意的是,尽管磷脂在人和秀丽隐杆线虫核孔之间并不保守,但它们位于这两个物种的IDR中。我们的结果表明,靶向多价接头核孔的IDR是有丝分裂过程中NPC拆卸的进化保守的驱动器。
收到2023年8月31日; 2023年12月7日接受;于2024年1月4日出版了作者分支:1麦吉尔大学医学系,蒙特利尔,魁北克H4A 3J1,加拿大; 2个细菌共生体进化,加拿大魁北克H7V 1B7,Inrs-Centre-Centre Armand-FrappierSantéBiotechnologie; 3宾夕法尼亚州立大学宾夕法尼亚州立大学动物科学系16802-3500; 4 McGill International TB Center,McGill University,蒙特利尔,魁北克H4A 3S5,加拿大。*信件:路加·哈里森(Luke B.基于参考的对齐;参考基因组。缩写:AIC,Akaike的信息标准; ATCC,美国类型文化收藏;床,浏览器可扩展数据; GATK,基因组分析工具包; Hal,分层对齐; IGV,综合基因组观众; MRCA,最终的共同祖先; MTBC,结核分枝杆菌复合物; NCBI,国家生物技术信息中心; NGS,下一代测序; PGAP,原核基因组注释管道; PHAST,具有空间/时间模型的系统发育分析; Rd,差异区域; RVD,[H37] RV-DETEATION; SNP,单核苷酸多态性; SRA,序列阅读档案; TBD1,结核分枝杆菌 - 特异性缺失1。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用五个补充表和三个补充数据。001165©2024作者
摘要。已经开发了一种方案,用于使用低电位能量来加热水,包括用于海水脱盐的目的。评估了卡利纳周期的有效性。建议在水处理周期中使用加热水。这个周期可以在海洋附近的地热源上实施。基于可再生能源的装置以环保的方式适合该国经济,并提高能源安全。因此,循环被整合到海水脱盐系统中。但是,使用地热能存在一些缺点。首先,它仅在世界某些地方可用,因为需要地质活动区域才能获得热量。此外,安装必要的设备和基础设施可能会昂贵,这使得某些人很难获得这种能源。最后,去除热过程也会导致环境下降,因为它会损害该地区敏感的生态系统和水源。
多发性骨髓瘤是一种异质性血液病,起源于骨髓,以恶性浆细胞单克隆扩增为特征。尽管已有新的治疗方法,但多发性骨髓瘤在临床上仍然具有挑战性。预后不良患者的一个共同特征是表观遗传沉默子EZH2(PRC2的催化亚基)活性增强。值得注意的是,PRC2的募集缺乏序列特异性,迄今为止,确定哪些基因组位点是PRC2介导沉默的分子机制仍不清楚。EZH2上存在一个长链非编码RNA (lncRNA)结合口袋,这表明lncRNA可能介导PRC2募集到特定的基因组区域。本文,我们结合RNA免疫沉淀测序、RNA测序和染色质免疫沉淀测序分析了人类多发性骨髓瘤原代细胞和细胞系,以鉴定EZH2的潜在lncRNA伴侣。我们发现lncRNA浆细胞瘤变异易位1 (PVT1) 直接与EZH2相互作用,并且在预后不良的患者中过表达。此外,预测为PVT1靶标的基因表现出H3K27me3富集,并与促凋亡和抑癌功能相关。事实上,PVT1抑制独立地促进了PRC2靶基因ZBTB7C、RNF144A和CCDC136的表达。总而言之,我们的研究表明,PVT1是PRC2介导的多发性骨髓瘤中抑癌基因和促凋亡基因沉默的相互作用伙伴,使其成为一个极具吸引力的潜在治疗靶点。