摘要:一种新型的杂酵母(III)乙酰乙酸(ACAC)复合物,(L-5-CHO)2 IR(ACAC)(3B)(3B),是由2-(9'-己基碳唑-3'-3'-y-yly)合成的 - 5-5-5-甲基甲基)-5-甲基甲基吡啶(L-5-Cho)。复合物3b被确定为热化学稳定。研究了该化合物的光致发光特性,3B的二氯甲烷溶液在662 nm处产生无结构的发射,表明与父络合物相比,甲基基团红移151 nm。复合物3b也显示出具有中等的光致发光量子产率(67%)和短发射寿命(= 280 ns)。有机发光二极管(OLEDS)用由聚(N-乙烯基碳水化合物)(PVK),2-(4-tert-叔丁基苯基)-5-(4-二苯基)-1-1,1,3,4-4-oxadia-oxadia-oxadiazole(PBD)组成的溶液加工的发射层(EML)制造。含有复合物3b的OLED在624 nm处显示出红橙发光(EL)。研究了宿主材料的影响,并在发射层中使用PVK和PBD达到了最佳性能,结果OLED的当前效率为0.84 CD/A,功率效率为0.20 Lm/w,外部量子效率(EQE)的功率为0.66%,为2548 CD/M M 22548 CD/M M 2546%。
摘要。已经开发了一种方案,用于使用低电位能量来加热水,包括用于海水脱盐的目的。评估了卡利纳周期的有效性。建议在水处理周期中使用加热水。这个周期可以在海洋附近的地热源上实施。基于可再生能源的装置以环保的方式适合该国经济,并提高能源安全。因此,循环被整合到海水脱盐系统中。但是,使用地热能存在一些缺点。首先,它仅在世界某些地方可用,因为需要地质活动区域才能获得热量。此外,安装必要的设备和基础设施可能会昂贵,这使得某些人很难获得这种能源。最后,去除热过程也会导致环境下降,因为它会损害该地区敏感的生态系统和水源。
图2 | GSK2194069,TVB-2640和TVB-3166形成了FASN抑制的共识代谢概况。A,UMAP 2D投影的208-mer载体,这些载体含有响应于BT-474细胞的相应药物治疗的细胞内和中代谢产物浓度的相对变化。123个点代表266个LC-MS样品,总共有一个细胞内和一个培养皿样品。b-c,在用1 µM GSK2194069(B)和1 µM Fasnall(C)处理的BT-474细胞中细胞内代谢物浓度的扰动24小时。log 10集成的LC-MS峰强度用于两个轴。代谢产物的代谢物用红色圆圈描绘出低于0.05的Benjamini-Hochberg FDR调整后的P值(Q值)。红色圆的大小与Q值成反比。d-e,用不同浓度的GSK2194069(d)和Fasnall(E)处理的八种乳腺癌细胞系中的相对分离性荧光1.5 h。面板D和E的数据是平均值±SE(n≥12)。
杂功能嵌合降解器是一类配体,它们募集靶蛋白到E3泛素连接酶以驱动化合物依赖性蛋白质降解。对作用机理至关重要的是靶,降解器和E3连接酶之间形成三元复合物,以促进泛素化和随后的降解。然而,存在对三元复合物结构的有限见解,包括几乎没有对最广泛选择的E3,凋亡1的细胞抑制剂的研究(CIAP1)。我们的结果揭示了独特的三元复合结构的见解,并表明增加的三元复合稳定性/刚度不一定总是与提高的降解效率相关。
91,否。12,2023,pp。1658-1683,doi:10.1002/prot.26609
多细胞动物的摘要需要polycomb组蛋白的表观遗传抑制。后者在多种亚基X es中组装,其中两种,poly comb r ePressiv e comple x 1(pr c1)和poly comb r e:re atressiv e comple x 2(prc2),起作用,以抑制k e y de v e v elopmental基因。ho w pr c1和pr c2识别特定基因仍然是一个悬而未决的问题。在这里,我们报告了数百个DNA元素的鉴定,这些DNA元素将规范PRC1绑定到人类发育基因。我们使用该术语系列来描述在某些基因组部位在某些基因组部位显着存在的过程,尽管该复合物不太可能直接与DNA相互作用。详细的分析表明,与PRC1束缚相关的序列特征与F a v我们的PR C2结合的序列特征不同。t hrought the Genome,两种序列的特征是不同比例混合的,以产生一系列的DNA元素,这些元素的范围从主要是prc1或prc2到能够束缚这两种复合物的元素。新兴图片类似于果蝇的多梳子响应元件(PRES)对polycomb络合物的范式靶向,但可塑性是较高的。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2025.02.10.637372 doi:Biorxiv Preprint
总之,我们能够成功转录修饰的 eGFP mRNA、Cas9 mRNA 和 sgLuc 和 sgEGFR 并将它们封装在 LNP 中。我们通过加入假尿苷并利用 CleanCap 技术引入 5' 帽来修饰 RNA,因为它不仅可以增强 RNA 的稳定性,还可以提高翻译率并最大限度地降低在细胞内转染时的毒性。我们取得的另一个有希望的结果是关于 LNP 大小、Zeta 电位和 PDI,这似乎适合在体内实验中使用。以前的研究中还没有发现利用 LNP 作为载体(除 SARS-CoV-2 mRNA 疫苗外)的基因治疗方法。更具体地说,利用安全批准的可电离 Moderna SM-102 脂质和辉瑞 ALC-0315 脂质(我们在研究中用于生成 LNP)的体内基因治疗方法至今仍不得而知。因此,我们希望将来能开发出结合这些可电离脂质的新型基因疗法。此外,目前还没有关于将 Prime editor 包装在 LNP 中的研究。我们相信可以包装 prime editor mRNA,因为我们已经证明其他小 mRNA 也可以包装在 LNP 中。其他研究通过展示 DNA 和 RNP 的封装进一步支持了这一点。再说一遍,很难找到成功将 Piezo1 mRNA 包装在 LNP 中的研究。这可能是因为长 mRNA 的体外转录很难进行,因为 RNA 的二级结构会出现,因为进行载体线性化不是一件容易的事。因此,我们无法成功转录 Piezo1 mRNA,目前正在排除故障。然而,我们相信,一旦我们成功转录 Piezo1 mRNA,这将为治疗开辟许多可能性,例如治疗脂肪肝或肝脏组织再生,后者将有助于器官捐赠后的恢复过程。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 2 月 3 日发布了此版本。;https://doi.org/10.1101/2024.02.02.578725 doi:bioRxiv 预印本
模型植物拟南芥编码10个AGO,根据氨基酸序列同源性可分为三组。属于第 1 组和第 2 组的 RISC 主要在细胞质中发挥作用,切割目标 RNA 或抑制蛋白质合成。属于第 1 组的 AGO1-RISC 在植物发育、分化和应激反应中起重要作用,而属于第 2 组的 AGO2-RISC 参与抗病毒反应。另一方面,属于第3组的RISC已知能与细胞核内合成的RNA结合,促进附近DNA的甲基化,并使转座子和非自身基因(具有转移能力的DNA)沉默(图1)。尽管我们对植物 RISC 功能的理解已经取得了进展,但每个 RISC 与哪些核酸序列紧密结合仍不清楚。在本研究中,立教大学理学院副教授岩川弘隆阐明了拟南芥三组 RISC 的核酸结合特性。首先,利用植物无细胞翻译系统(注4)合成AGO蛋白,并在其中添加小RNA,形成了属于第1组的AGO1-RISC、属于第2组的AGO2-RISC、以及属于第3组的AGO4-RISC、AGO6-RISC、AGO9-RISC。将纯化的RISC与和小RNA完全互补(形成碱基对)或部分序列错配(不形成碱基对)的单链RNA或DNA混合,利用被称为滤膜结合测定(注5)的生化技术定量分析结合亲和力(图2)。结果表明,与第1组和第2组相比,第3组RISC具有即使3'辅助区(注6)的互补性较低也能够结合(容忍错配)的特性(图3)。更有趣的是,我们发现在细胞质中发挥作用的第 1 组和第 2 组 RISC 与 RNA 紧密结合,而在细胞核中发挥作用的第 3 组 RISC 与 DNA 的结合比与 RNA 的结合更强(图 3)。这些结果表明,每组 RISC 都进化出了不同的靶标结合特性来发挥其独特的功能。这项研究不仅加深了我们对植物RNA沉默机制的理解,而且表明存在一种以前未知的机制,即真核RISC通过直接结合DNA发挥作用。此外,这些发现有望成为应用植物RISC创建基因表达控制技术的基础。 4. 期刊名称:核酸研究(在线版) 论文标题:植物 RISC 的进化枝特异性靶标识别机制 作者:岩川宏大 DOI 编号:10.1093/nar/gkae257 5. 研究项目 本研究得到了日本科学技术振兴机构的紧急研究支持计划(主要研究员:岩川宏大,项目编号:JPMJFR204O)、日本科学技术振兴机构的战略基础研究促进计划 PRESTO(主要研究员:岩川宏大,项目编号:JPMJPR18K2)以及文部科学省的青年科学家资助 A(主要研究员:岩川宏大,项目编号:16H06159)和基础研究 B(主要研究员:岩川宏大,项目编号: 23H02412)。 6. 研究内容相关咨询处 立教大学理学院生命科学系 副教授 岩川弘树 电话:03-3985-2687 邮箱:iwakawa[at]rikkyo.ac.jp <JST 项目相关咨询> 科学技术振兴机构 紧急研究推进部 东出隆伸 电话:03-5214-7276 邮箱:souhatsu-inquiry[at]jst.go.jp