Lena Tveriakhina,1,8 Gustavo Scanavachi,2,3,3 Emily D. Egan,1 Ricardo Bango da Cunha Correia,2,3 Alexandre P. Martin,1 Julia M. Rogers,1 Jodemy S. Jeremy S. Yodh,5 Jon C.美国马萨诸塞州波士顿,马萨诸塞州波士顿的Blavatnik研究所生物化学和分子药理学系美国2115年2月2日 Physics, Harvard University, Cambridge, MA 02138, USA 6 Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA 7 Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA 8 These authors contributed equally 9 Lead contact *Correspondence: kirchhausen@crystal.harvard.edu (T.K.),stephen_blacklow@hms.harvard.edu(s.c.b.)https://doi.org/10.1016/j.devcel.2024.03.021
抽象的简介和目标。目前,几种微生物疾病是突出的,并且在全球范围内引起关注。这项研究的目的是检查新合成的四元大环络合物对不同性菌株的抗菌潜力。大环脚手架因其独特的特性和靶向各种微生物的能力而引起了一种生物活性超分子化学的关注。因此,本研究的目的是开发一系列具有生物活性的基于金属金属的大环。材料和方法。通过模板方法合成所有大环化合物,并通过摩尔电导,元素研究以及光谱和磁研究验证。通过服用氨苄青霉素作为标准参考药物,评估了所有金属复合物的抗菌活性(MTCC 739)和金黄色葡萄球菌(MTCC 731)细菌菌株的抗菌活性。DNA光电分析电位。结果。结果揭示了通过金属的四氮键捕获而形成了新型大环复合物。铜的复合物具有针对金黄色葡萄球菌的强大潜力,因为铜和镍都显示出良好的DNA光裂解电位。结论。这些发现认可这些大环脚手架的生物医学相关性,这表明在靶向药物输送和潜在的临床应用中进一步进行了进一步的途径。构建的八面体几何形状增强了我们对它们结构方面的理解。关键字。这项研究为该领域做出了实质性的贡献,为晚期抗菌设计和应用的未来研究奠定了基础。抗细菌,DFT,DNA光裂,分子对接,模板方法
冠状病毒含有RNA病毒中最大的基因组之一,编码与蛋白水解加工,基因组复制和转录有关的14-16个非结构性蛋白质(NSP),以及四种构建成熟Virion的核心的结构蛋白。由于跨冠状病毒的保护,NSP形成了一组有前途的药物靶标,因为它们的抑制作用直接影响病毒复制,因此会影响感染的进展。显示出一种由一种RNA依赖性RNA聚合酶(NSP12),一个NSP7,两个NSP8辅助亚基和两个解旋酶(NSP13)酶形成的最小但功能齐全的复制和转录复合物。我们的方法涉及NSP12和NSP13,以使多个起点干扰病毒感染的进展。在这里,我们报告了一种合并的体外重新利用筛选方法,确定了新的和确认报告的SARS-COV-2 NSP12和NSP13抑制剂。
光合作用是由太阳的单个光子1-3引发的,作为弱光源,在叶绿素吸收带1中,每秒最多每秒几十个光子每秒传递几十个光子。在过去的40年中,在过去的40年中,许多实验和理论工作探索了在光合作用中吸收光合作用的事件,从而吸收了强烈的超短激光脉冲2-15。在这里,我们使用单个光子在环境条件下激发了紫色细菌的紫obacter sphaeroides的轻度收获2(LH2)复合物,分别包含9和18个细菌氯植物分子的B800和B850环。B800环的激发在大约0.7)ps中导致电子能量转移到B850环,然后在约100-FS的时间尺度上快速B850至B850 Energy Transfers在850–875时(参考)NM(参考)。16–19)。使用宣传的单光子源20,21以及一致计数,我们建立了B800激发和B850 Fuoresence发射的时间相关函数,并证明这两个事件都涉及单个光子。我们还表明,每个检测到的插入光子光子的概率分布支持这样一种观点,即吸收后单个光子可以驱动随后的能量传递和实现发射,因此,通过扩展,光合作用的主要电荷分离。一个分析随机模型和蒙特卡洛数值模型捕获了数据,进一步缔结了单个光子的吸收与自然光收获复合物中单个光子的发射相关。
*通信:27 Charalampos Tzoulis教授28神经偏见的神经系统疾病临床研究卓越中心29 Haukeland University Hospital,Haukeland University Hospital 30 Haukeland University Hospital 30 Bergen University of Bergen University of Bergen University of Bergen University of Bergen University 31 5021 Norway卑尔根。32电话:+47 55975061 33电子邮件:charalampos.tzoulis@nevro.uib.no 34 34 35
BTLA-HVEM复合物通过调节免疫发作,在癌症和癌症免疫疗法中起关键作用。BTLA和HVEM表达的失调有助于各种癌症类型的免疫抑制和肿瘤进展。靶向BTLA和HVEM之间的相互作用有望增强抗肿瘤免疫反应。这一综合体的破坏提出了推进癌症免疫疗法策略的宝贵途径。BTLA和HVEM的异常表达对免疫细胞功能(尤其是T细胞)的不利影响,加剧了逃避肿瘤的机制。理解和调节BTLA-HVEM轴是设计有效的免疫治疗干预措施针对癌症的关键方面。在这里,我们总结了有关BTLA和HVEM的结构和功能的当前知识,以及它们彼此的相互作用以及各种免疫伴侣。此外,还讨论了BTLA和HVEM在不同类型的癌症中的可溶性和反膜形式的表达及其对患者预后的影响。此外,还审查了可用于阻断BTLA-HVEM相互作用的蛋白质结合的抑制剂。所有提出的数据突出了BTLA-HVEM靶向疗法在癌症和自身免疫性疾病管理中的合理临床应用。但是,需要进一步的研究来确认此概念的实际使用。尽管关于BTLA-HVEM复合物的报告数量越来越多,但其生物学和功能的许多方面仍需要阐明。本次审查可以被视为遵循BTLA-HVEM研究道路的鼓励和指南。
BTLA-HVEM复合物通过调节免疫发作,在癌症和癌症免疫疗法中起关键作用。BTLA和HVEM表达的失调有助于各种癌症类型的免疫抑制和肿瘤进展。靶向BTLA和HVEM之间的相互作用有望增强抗肿瘤免疫反应。这一综合体的破坏提出了推进癌症免疫疗法策略的宝贵途径。BTLA和HVEM的异常表达对免疫细胞功能(尤其是T细胞)的不利影响,加剧了逃避肿瘤的机制。理解和调节BTLA-HVEM轴是设计有效的免疫治疗干预措施针对癌症的关键方面。在这里,我们总结了有关BTLA和HVEM的结构和功能的当前知识,以及它们彼此的相互作用以及各种免疫伴侣。此外,还讨论了BTLA和HVEM在不同类型的癌症中的可溶性和反膜形式的表达及其对患者预后的影响。此外,还审查了可用于阻断BTLA-HVEM相互作用的蛋白质结合的抑制剂。所有提出的数据突出了BTLA-HVEM靶向疗法在癌症和自身免疫性疾病管理中的合理临床应用。但是,需要进一步的研究来确认此概念的实际使用。尽管关于BTLA-HVEM复合物的报告数量越来越多,但其生物学和功能的许多方面仍需要阐明。本次审查可以被视为遵循BTLA-HVEM研究道路的鼓励和指南。
•含有Cas9和GRNA的纳米配方,将外源喷涂到感染植物上。•核糖核蛋白(RNP)络合物的递送,该复合物靶向特定细菌毒性基因HRPX,HRPG,HRPB和HOPP1。•用于不同疾病的GRNA复合物的个体或组合。•所提出的技术靶向病原体毒力因子,以防止细菌枯萎病,导致小米的xanthomonas oryzae pv oryzae(XOO)在水稻上,细菌斑点,引起丁香肌pv。番茄dc3000在拟南芥和细菌枯萎病上,在马铃薯上引起拉尔斯托尼亚溶剂。•RNPS纳米配方具有增强的渗透和效率。•将RNP应用的管道和SOPS靶向细菌中的其他基因
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。