摘要:食品包装涉及封闭食物的过程,以防止其免受外部元素的影响,这些元素可能在运输,存储或出售时污染,伤害或分解它。使用的包装材料的选择在确保食品安全和延长保质期方面起着至关重要的作用。这使得探索可持续替代方案,例如天然纤维增强的绿色复合材料(NFRGC),必不可少的。除了包装可持续性外,NFRGC在包括半结构,结构,汽车,航空航天,医疗等行业的几个重要应用中也获得了突出性。由于其长期可持续性。这项审查工作的重点是与姜黄油插入的绿色复合膜的当前和潜在应用。它突出了现在使用的材料的重要性及其局限性。可持续包装的必要性源于客户需求,法律压力和环境问题。由于其良好的机械性能,可负担性,可生物降解性,改善生命周期和生态友好性,因此正在研究绿色复合材料作为合成聚合物复合材料的替代品。姜黄油嵌入纳米复合材料为食品包装提供了独特的好处,包括改善的机械和屏障特性,抗菌和抗氧化剂的增加以及潜在的环境益处。尽管成本和可扩展性等挑战,但它们代表了包装创新的新领域。关键字:食品包装,绿色复合膜,聚合物,互化的纳米结构[收到6月6日,2024年; 2024年10月8日修订; 2024年10月24日接受]印刷ISSN:0189-9546 |在线ISSN:2437-2110
在环境水系统,废水处理厂(WWTP)和饮用水中出现的废水中发现了许多这些PHAC。PHAC的存在不仅可能对公共卫生构成危险,而且对水生系统构成危险[16]。使用时,它们相对稳定,并且在使用时不会被人体和动物体系完全吸收[17]。因此,它们没有完全代谢,并且从体液和粪便中排出,PHAC从中进入环境[18]。其他来源归因于过期的药物和药物废物的处置不当,兽医和屠宰场的径流以及国内废物[19-21]。在饮用水中已经报道了常用的药物,例如可替宁,咖啡因和对乙酰氨基酚[22]。研究表明,其中一些PHAC可能与神经生理效应以及诱变和致癌后果有关[23,24]。饮酒中已有报道
摘要:刺激反应性材料,称为“智能”或“智能”材料,在分离场(包括气体分离)中引起了极大的关注。在各种可用的刺激中,将光作为无损,成本效益,无化学刺激的使用,具有相对快速的响应是非常有希望的。在此,我们总结并突出了用于合成光反应有机聚合物膜,无机金属 - 有机框架薄膜和无机 - 有机混合矩阵膜的方法。我们讨论了这些材料在气体分离中的应用,并提供了最近进行的研究中选定的最新示例。此外,光自动气体分离膜测试细胞在评估和比较光自动膜在气体分离过程中的性能中起着至关重要的作用。因此,我们回顾了光响应气体分离膜测试细胞的发展以及归因的缺点和局限性。提出并讨论了旨在突出测试准确性的第三代测试系统。关键字:光反应分子,气体分离膜,光反应金属 - 有机框架,光电机制,气体分离设备设置
摘要:在碳纳米颗粒中,富勒烯被观察到是独特的零维空心分子。富勒烯具有较高的表面积,并且具有卓越的结构和物理特征(光学,电子,热,机械等)。以纳米复合材料的形式观察到了富勒烯的进步。在膜扇区发现了富勒烯纳米复合材料的应用。这篇尖端的评论文章基本上描述了富勒烯纳米复合膜对水修复的潜力。添加富勒烯纳米颗粒可以修改纳米复合膜的微观结构和物理特征,除了膜孔隙率,选择性,渗透性,水通量,脱脂性和其他重要特性的水补救性能。富勒烯纳米复合材料设计的变化导致盐,所需金属,有毒金属离子,微生物等之间的分离更大。对开创性富勒烯的膜材料的未来调查可能会克服高级应用程序的几种设计和性能挑战。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
摘要:在本文中,我们报告了新型聚酰亚胺(PI)纳米复合物,并用金属氧化物(TIO 2或ZRO 2)纳米颗粒和纳米碳(碳纳米纤维(CNF)或官能化的碳纳米管(CNT碳nanotubes)(CNT f s))。对所使用材料的结构和形态进行了全面研究。对其热和机械性能进行了详尽的研究。与单纤维纳米复合材料相比,我们揭示了纳米成分对PI的许多功能特征的协同作用,包括热稳定性,刚度(玻璃过渡温度下方和高于玻璃过渡温度),产量点和浮动温度。此外,还展示了通过选择纳米填料的正确组合来操纵材料特性的可能性。所获得的结果可以成为具有PI基于PI的工程材料的平台,该工程材料具有量身定制的特征,能够在极端条件下运行。
摘要鉴于对AI生成和合成媒体的兴趣不断上升,其目标是综合有关AI技术和媒体操作如何融合的趋势主题。通过主题模型Ling和数据扫描进行探索性分析,分析了13个国际学术/非学术数据库的2727条记录的评论。对结果的解释允许提出“ AI媒体”概念的提议,构建了社交 - 新的人工服务媒体现象,导致了扩展或AI的介导。本研究确定了基本的挑剔,包括信任和道德,隐私保障以及AI生态系统的持续能力。拟议的概念模型,定义和研究议程有助于对这一新兴领域的全面理解。该研究以精确的术语和前瞻性观点支持学术询问和决策,还考虑了围绕生成性AI的炒作。
摘要:研究了溶液法制备的银 (Ag) 纳米粒子修饰多壁碳纳米管 (MWNT) 填充硅胶复合膜的电性能。使用亚硫酰氯将原始 MWNT 氧化并转化为酰氯功能化的 MWNT,随后将其与胺基封端的聚二甲基硅氧烷 (APDMS) 发生反应。随后,用银纳米粒子修饰 APDMS 修饰的 MWNT,然后与聚二甲基硅氧烷溶液反应形成银修饰 MWNT 硅胶 (Ag-decorated MWNT-APDMS/Silicone) 复合材料。通过透射电子显微镜 (TEM) 观察了含有银修饰 MWNT 和 APDMS 修饰 MWNT 的硅胶复合材料的形貌差异,并通过四探针法测量了表面电导率。 Ag修饰的MWNT-APDMS/硅胶复合膜比MWNT/硅胶复合膜表现出更高的表面电导率,说明可以通过用APDMS和Ag纳米粒子对MWNT进行表面改性来改善Ag修饰的MWNT-APDMS/硅胶复合膜的电性能,从而拓展其应用领域。