Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
摘要:本研究旨在增强农业副产品的增值,以通过溶液铸造技术生产复合材料。众所周知,PLA对水分敏感并在高温下变形,这限制了其在某些应用中的使用。与植物基纤维混合时,弱点是较差的填充 - 马trix界面。因此,通过乙酰化和碱处理在大麻和亚麻纤维上进行表面修饰。将纤维铣削以获得两种颗粒尺寸<75 µm和149–210 µm,并在不同的载荷(0、2.5%,5%,10%,20%和30%)下与聚(乳酸)酸混合,形成复合膜以形成薄膜这些膜的谱图,物理和机械性质。所有薄膜标本都显示出C – O/O – H组,未处理的亚麻填充剂中的π–π相互作用在膜中显示出木质素酚环。注意到,最大降解温度发生在362.5°C。未经处理,碱处理的最高WVP和乙酰化处理的复合材料为20×10 - 7 g·m/m 2 Pa·S(PLA/HEMP30分别为7 g·m/m 2 Pa·S(PLA/HEMP30)。与纯PLA相比,增加填充含量会增加复合膜的色差。碱处理的PLA/亚麻复合材料在2.5或5%的填充物载荷下,其拉伸强度,伸长率和Young的模量显示出显着改善。增加填充物的增加导致吸收的水分显着增加,而水接触角则随着填料浓度的增加而降低。亚麻和大麻诱导的基于PLA的复合膜,载荷为5 wt。载荷显示出更稳定的所有检查特性,并有望提供具有令人满意的性能的独特工业应用。
控制有机量子点纳米复合膜中结晶无机量子点 (QD) 的分散性对于各种光电设备都至关重要。控制这些纳米复合材料中纳米级结构的一种有前途的方法是使用 QD 上的适当有机配体,这有助于使它们与有机主体在电子和结构上兼容。在这里,作者结合使用小角度 X 射线和中子散射,展示并量化了这种兼容的电子活性有机半导体配体物种融入硫化铅 QD 的天然油酸配体包层,以及如何轻松控制这种配体负载。此外,原位掠入射广角/小角 X 射线散射表明 QD 配体表面化学如何对纳米复合膜的自组装产生显著影响,无论是小分子结晶还是 QD 分散与有序/聚集。这里展示的方法表明,活性配体的结合程度在化学结构上与宿主小分子有机基质密切相关,在 QD 和小分子成分的自组装以及确定系统最终的光电特性方面都发挥着重要作用。
编辑:尽管水对于人类生存至关重要,其分布不平衡以及暴露于无数污染来源,但Daniel CW Tsang仍然使水短缺变得越来越紧迫。膜技术提供了一种有效的解决方案,可减轻缺水的影响。通过合并具有不同性质和尺寸尺寸的添加剂,可以提高膜的选择性和渗透率。然而,由于关于水处理应用中纳米级材料的环境和经济可行性的巨大辩论,我们可以推断出,第一个工业纳米复合膜的商业化需要很长的路要走。这个绊脚石促使科学社区搜索具有可持续特征的替代修改路线和/或材料。在本文中,我们提出了一项特学评论,通过应用自然添加剂(例如,粘土,阿拉伯胶,沸石,木质素,水可通道蛋白),将可持续性,纳米技术和膜技术融合在一起,将其添加剂(例如,Bio Char,eReTER)和recel and receyl(例如,E.G),E.苯二甲酸酯,再生聚苯乙烯)用于聚合膜的合成和修饰。在存在的可持续天然和废物基材料的存在引起的聚合物膜上赋予了特征。此外,还阐述了与这些纳米和微型添加剂在复合膜修改中应用的障碍相关的障碍的策略。
摘要:具有强垂直磁各向异性 (PMA) 的磁绝缘体在探索纯自旋流现象和开发超低耗散自旋电子器件中起着关键作用,因此它们在开发新材料平台方面非常有吸引力。在这里,我们报告了具有不同晶体取向的 La 2/3 Sr 1/3 MnO 3 (LSMO)-SrIrO 3 (SIO) 复合氧化物薄膜 (LSMIO) 的外延生长,该薄膜通过脉冲激光沉积的连续双靶烧蚀工艺制成。LSMIO 薄膜表现出高晶体质量,在原子级上具有 LSMO 和 SIO 的均匀混合物。观察到亚铁磁和绝缘传输特性,温度相关的电阻率与 Mott 可变范围跳跃模型很好地拟合。此外,LSMIO 薄膜表现出强的 PMA。通过进一步构建亚铁磁绝缘体LSMIO和强自旋轨道耦合SIO层的全钙钛矿氧化物异质结构,观察到显著的自旋霍尔磁阻(SMR)和自旋霍尔类异常霍尔效应(SH-AHE)。这些结果表明亚铁磁绝缘体LSMIO在开发全氧化物超低耗散自旋电子器件方面具有潜在的应用价值。关键词:钙钛矿氧化物,磁性绝缘体,垂直磁各向异性,自旋霍尔磁阻,自旋电子学■引言
氧化石墨烯(GO)在水纯化领域中具有巨大的潜力。但是,当直接应用于实际废水废水时,纯GO膜遭受诸如污染灵敏度和有限稳定性等缺点。为了应对这些挑战并解锁GO膜的全部潜力,通过与ZIF-8的纳米颗粒的插入(一种沸石咪二唑酯框架)的插入,已经开发出了新型的纳米复合膜。制备的GO/ZIF-8(GZ)纳米复合膜表现出增强的亲水性和特殊的水纯化能力。具体来说,与原始的GO参考Mem Brane相比,GZ膜表现出了超过两倍的渗透性增强。这种增强效果与盐和有机污染物的抗死性能和竞争性排斥率相结合。gz膜通过3种工业废水废水的跨流过滤有效地用于纯化。与原始的GO参考膜相比,它们显示出改善的分离性能,并且在跨流条件下的高稳定性。使用结构和形态学分析阐明了GZ膜高性能的起源。这项工作强调了使用基于石墨烯的膜在水处理领域取得的重大进展。
目前,聚合物基湿度传感器面临诸多限制,包括合成能耗高、灵敏度低和响应时间慢。本研究提出了一种创新方法来克服这些挑战,该方法基于一种强大的全水基原位微乳液聚合。整个过程中使用水可减轻对环境的负面影响。选择用浓度范围为 0.2-1.0 wt% 的还原氧化石墨烯 (rGO) 增强的硫醇烯聚合物来制造这些化学电阻传感器。所选硫醇烯具有高疏水性和半结晶性质,表明即使长时间暴露在潮湿环境中也能抵抗早期分层。加入 rGO 不仅可以赋予复合膜导电性,还可以增强复合膜的机械和防水性。0.6% rGO 复合材料表现出最佳的湿度传感电阻,在三个暴露周期中对 800-5000 ppm 的水蒸气浓度表现出快速而一致的响应。此外,该传感器对水蒸气的选择性优于甲苯、丙醇和 4-甲基-2-戊醇,这归因于水性薄膜的高表面亲水性和固有孔隙率,以及基质内 rGO 薄片的网络结构。总之,这项研究开创了一种基于聚合物的湿度传感新方法,解决了关键限制,同时提供了更高的灵敏度、快速的响应时间和卓越的选择性。
高光学吸收弹性纳米复合材料可以形成为独立材料,以薄膜形式应用于宏观 [1] 和微观目标 [2] 上,并使用软光刻等表面改性技术进行图案化。 [3] 它们广泛应用于从发光二极管 [4] 到生物检测 [5] 和太阳能电池 [6] 的各个领域。 [7–11] 这些弹性复合材料在生物医学成像方面显示出巨大的前景,特别是在光学超声 (OpUS) 生成方面。 [7–11] 在这里,弹性复合膜吸收脉冲或调制光源,通过光声效应产生超声波。 [10,12,13] OpUS 发射器的优势在于它们可以从微型设备产生高超声压力和带宽,而不会影响其生成效率;此外,它们不受电磁干扰,并具有低成本生产的潜力。 [8,14,15]
寿命和富裕电子设备和组件的性能受到大量热积聚的影响,并且必须通过热导电聚合物复合膜解决此问题。因此,对高热导率纳米复合材料的发展的需求在各种应用中具有重要作用。在本文中,审查了各种聚合物的导热率的不同粒子增强剂,例如单一和杂化形式,涂层和未涂层的颗粒以及化学处理的颗粒,并讨论了所需特性改进的各种聚合物的热电导率。此外,还详细介绍了制造过程(例如注射成型,压缩成型和3D打印技术)在高温电导率聚合物复合材料中的作用。最后,讨论了未来研究的潜力,这可以帮助研究人员致力于增强聚合物材料的热性能。