脊柱融合是最常见的外科手术(全球每年约有 160 万例)。螺钉和杆等植入物用于帮助脊柱融合。将螺钉置入椎骨具有挑战性:外科医生必须使用穿孔器械仔细准备导向孔,以确保螺钉置入椎弓根内。椎弓根壁穿孔是与椎弓根螺钉插入相关的常见并发症,可能导致非常严重的临床后果。
量子网络是实现分布式量子信息处理的关键。由于单链路通信速率随距离呈指数衰减,为了实现可靠的端到端量子通信,节点数量需要随网络规模增长。对于高度连接的网络,我们发现容量会随着网络节点密度的增加而出现阈值转变——在临界密度以下,速率几乎为零,而在阈值以上,速率随密度线性增加。令人惊讶的是,在阈值以上,由于量子网络支持多路径路由,两个节点之间的典型通信容量与它们之间的距离无关。相比之下,对于连接较少的网络(例如无标度网络),端到端容量会随着节点数量的增加而饱和为常数,并且始终随距离衰减。我们的结果基于容量评估,因此可观容量的最小密度要求适用于任何量子网络的一般协议。
牛津软物质和生物物质中心 乌得勒支大学物理和胶体化学 乌得勒支大学软凝聚态物质组 荷兰阿姆斯特丹 AMOLF 研究所 新英格兰复杂流体工作组 布兰代斯复杂流体组 比利时布鲁塞尔自由大学聚合物和软物质动力学实验室 法国巴黎高等师范学院 Damien Baigl 实验室 德国莱比锡大学 (Käslab) 软物质物理组 德国弗莱堡弗劳恩霍夫高速动力学 EMI 研究所“软生物物质中的冲击波” 英国中央兰开夏大学计算物理组 德国雷根斯堡大学 Stephan Baeurle 课题组先进材料理论与计算 德国哥廷根马克斯普朗克动力学与自组织研究所复杂流体动力学系莱顿,荷兰弗莱堡高等研究院 (FRIAS),弗莱堡大学软物质研究学院,软物质和部分有序物质物理学博士卢布尔雅那大学数学和物理学院,SLO 软物质和分子生物物理小组,应用物理系,圣地亚哥德孔波斯特拉大学,西班牙软物质团队,查尔斯库仑实验室,法国国家科学研究中心和蒙彼利埃第二大学,蒙彼利埃,法国 Matière et Systèmes Complexes, CNRS, Université Paris Diderot, France Laboratoire de Physique des Solides, CNRS, Université Paris 11, Orsay, France Matière molle et chimie, CNRS, ESPCI, Paris, France Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, Paris, France Physico-chimie des Polymères环境分散科学等Ingénierie de la Matière Molle,法国巴黎 ESPCI 实验室胶体与材料部门,CNRS,ESPCI,巴黎微流控、化学组织和纳米技术组,法国巴黎 ENS 居里物理化学研究所,居里研究所,法国巴黎 Laboratoire Interdisciplinaire sur l'Organise Nanométrique et Supramoléculaire,CEA Saclay Service de Physique de l'État Condensé, CEA Saclay Institut de Physique de Rennes, équipe matière molle, CNRS, Université de Rennes 1, France Institut Charles Sadron, CNRS, Université de Strasbourg, France Centre de Recherche Paul Pascal, Bordeaux, Paris, France Laboratoire du Futur, CNRS, Rhodia, Bordeaux, France LPMCN,équipe Liquides aux 接口,法国里昂第一大学国家科学研究中心 比利时布鲁塞尔自由大学物理系聚合物与软物质团队 比利时蒙斯大学界面与复杂流体实验室 法国里昂高等商学院国家科学研究中心物理实验室 德国康斯坦茨大学 Fuchs 和 Maret 教授团队 德国斯图加特霍恩海姆大学 Hinrichs 和 Weiss 教授团队
5 加州大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,美国。 6 马克斯普朗克分子细胞生物学和遗传学研究所以及马克斯普朗克复杂系统物理研究所,德国德累斯顿。 7 欧洲分子生物学实验室(EMBL),发育生物学部,德国海德堡。 8 加州大学欧文分校发育与细胞生物学系,加利福尼亚州欧文,美国。 9 波士顿大学生物医学工程系和生物设计中心,马萨诸塞州波士顿,美国# 通讯作者:alvaro.sanchez@yale.edu 摘要 定向进化已用于自上而下地设计生物系统数十年。通常,它已应用于生物体水平或以下,通过迭代采样突变景观来引导寻找具有更高功能的遗传变异。在生物体水平之上,少数研究尝试人工选择微生物群落和生态系统,但成功率参差不齐,且通常不高。我们对人工生态系统选择的理论理解仍然有限,特别是对于大型无性生物群落,而且我们对设计有效的方法来指导它们的进化知之甚少。为了解决这个问题,我们开发了一个灵活的建模框架,使我们能够在广泛的生态条件下系统地探究任意一组群落和选定功能上的任意选择策略。通过在相同条件下人工选择数百个计算机模拟微生物元群落,我们检查了迄今为止使用的两种主要育种方法的基本局限性,并规定了显着提高其功效的修改。我们确定了一系列定向进化策略,特别是当结合使用时,它们更适合自上而下地设计大型、多样化和稳定的微生物群落。我们的结果强调,定向进化允许在生态结构功能景观中进行导航,以寻找动态稳定、生态和功能具有弹性的高功能群落。
* 通信地址:satalebi@aut.ac.ir;Scopus ID:25650802200 摘要:热能系统 (TES) 有助于实现不同能源系统之间更大程度的整合,从而实现更清洁、更可持续地利用能源资源。本文回顾了当前文献,展示了基于 TES 的解决方案在电网连接系统中的开发和部署。这些解决方案整合了能源系统以获得新的能源管理潜力,更好地利用可再生能源 (RES) 资源,实现能源系统基础设施现代化,促进包括能源转换和服务交付在内的网络运营实践。该网络具有成本效益,便于使用。本文对其他关于 TES 和 TES 建筑应用的储能技术和材料以及网络应用的电能存储辅助设备的研究进行了补充。讨论的主要方面是 TES 系统的特性、参数和模型、TES 在可变 RES 系统中的部署、小型网络、多电源网络以及 TES 应用的新兴趋势。关键词:热能存储;储能;综合能源系统;混合可再生能源;TES。© 2020 作者版权所有。本文是一篇开放获取的文章,根据知识共享署名 (CC BY) 许可的条款和条件分发 (http://creativecommons.org/licenses/by/4.0/)。
控制论中的可控性概念是指通过选择合适的输入将系统引导至期望状态的能力。复杂网络(如交通网络、基因调控网络、电网等)的可控性可以实现高效运行或全新的应用可能性。然而,当控制理论应用于此类复杂网络时,会出现一些挑战。本论文考虑了其中一些挑战,特别是我们研究如何通过放置控制输入或通过在节点之间增加边来扩展网络,以最低成本使给定网络可控。作为成本函数,我们采用所需的控制输入数量或它们必须施加的能量。如果控制输入可以取正值或负值,但不能同时取正值或负值,则称为单侧控制。受许多单侧控制常见的应用的启发,我们将这种特殊情况下的经典可控性结果重新表述为更高效的形式,以便进行大规模分析。假设每个控制输入只针对一个节点(称为驱动节点),我们表明单边可控性问题在很大程度上是结构性的:根据网络的拓扑特性,我们推导出单边控制输入最小数量的理论下限,这些界限与已经为无约束控制输入最小数量建立的界限类似(例如,可以假设正值和负值)。通过单边控制输入放置的建设性算法,我们还表明理论界限通常可以实现。如果需要不合理的控制能量来将其引导到某个方向,网络可能在理论上可控,但在实践中不可控。对于无约束控制输入的情况,我们表明控制能量取决于网络模式的时间常数,它们越长,控制所需的能量越少。我们还提出了不同的驱动节点放置问题策略,以降低控制能量要求(假设理论可控性不是问题)。对于我们考虑的最一般的网络类别,即具有任意特征值(因而具有任意时间常数)的有向网络,我们建议基于网络非正态性的新特征(即网络能量分布不平衡)的策略。我们的公式允许将节点级别的网络非正态性量化为两个不同中心性指标的组合。第一个度量量化每个节点对网络其余部分的影响,而第二个度量则描述从其他节点间接控制节点的能力。选择最大化网络非正态性的节点作为驱动节点可显著减少控制所需的能量。扩大网络,即为其添加更多边,是一种有希望减少控制网络所需能量的替代方法。我们通过推导敏感度函数来实现这一点,该函数能够用 H 2 和 H ∞ 范数量化边修改的影响,进而可用于设计边添加,以改进常用的控制能量指标。
过去二十年来,解决新疫苗研发和部署问题的主要机制是通过建立跨国公私伙伴关系。与世卫组织和其他全球卫生机构不同,这些伙伴关系专门在疫苗领域开展工作。例如,总部位于日内瓦的国际组织 Gavi 致力于扩大低收入国家的疫苗接种渠道,从而间接增加对疫苗产品的需求。在 2014 年至 2016 年埃博拉疫情爆发后,流行病防范创新联盟 (CEPI) 成立,以资助和协调针对传染病的疫苗研发。
出勤政策 本课程要求积极参与、独立完成活动以及与同学在线讨论。因此,熟练的时间管理和良好的组织能力对于成功至关重要。大学关于课堂出勤和补考、作业和其他工作的政策可以在这里找到。你有责任获取每个模块中提供的信息并确保在截止日期之前完成作业。跟上进度、不落后很重要。从上课第一天开始——观看讲座、按时做作业、在需要时寻求帮助——记住,没有什么可以替代日常准备。 联系老师 老师将随时为学生提供服务。请安排在您方便的时候来访。如果您打电话而我没空,请留下您的姓名和电话号码或电子邮件地址,我们会在收到消息后立即与您联系。联系我的最佳方式是通过电子邮件。
数字经济是一个复杂的系统,但正统的经济理论无法处理这种复杂性。几十年来,经济学家已经意识到传统的理论模型与人们和机构实际行为的数据不一致,一种新的行为经济学正在兴起。过去 50 年来发展起来的复杂系统科学已经开发出许多分析复杂系统非线性非平衡动态的新思想和新方法。为了应对正统经济学的失败,管理全球经济的人愿意并能够接受和引领这种看待经济系统的新方式。因此,经济学正在不断发展,能够更好地为公共和私营部门的决策提供信息。这为企业家和政策制定者提供了思考数字经济的新方式,反过来又将提供许多现实世界复杂性的新例子。数字经济将推动未来财富和繁荣的创造,与复杂系统科学共同发展。我们假设复杂系统的研究将使人们更好地理解数字经济,增强现有的经济模型并提高其预测能力。
在国际武装冲突中,受第三个中立国管辖或控制的商业太空行为者可能会以各种方式卷入冲突,这可能会加剧交战国与中立国之间的紧张局势并引发误解,并有可能使中立国失去中立地位。