虽然使用单细胞 RNA 测序 (scRNA-seq) 来了解靶标生物学已得到充分证实,但其在提高治疗靶标临床成功率方面的预测作用仍未得到充分探索。受先前关于遗传证据与临床成功之间关联的研究的启发,我们使用已知药物靶标基因的回顾性分析从 scRNA-seq 数据中识别靶标临床成功的潜在预测因子。我们研究了成功的药物靶标是否与疾病相关组织中的细胞类型特异性表达(细胞类型特异性)有关,以及与健康对照相比疾病患者中的细胞类型特异性过度表达(疾病细胞特异性)有关。通过分析疾病和组织的 scRNA-seq 数据,我们发现细胞类型和疾病细胞特异性都是进入临床开发的靶标中富集的特征,并且疾病相关组织中的细胞类型特异性可以可靠地预测靶标从 I 期到 II 期的进展。虽然 scRNA-seq 分析确定了比直接遗传证据更大且互补的靶标空间,但它与特异性和药物批准的关联似乎不太明确。我们讨论了如何进一步扩展和协调单细胞数据集、在目标发现中更复杂地整合这些数据、以及改进跟踪临床试验结果的方法,以增强我们在未来利用 scRNA-seq 洞察力进行药物开发的能力。
在以应对气候变化和遏制温室气体排放的紧急情况为标志的时代中,农业的作用受到了严格的审查(Smith等人2014)。全球农业部门与国际贸易复杂地交织在一起,强调了农业生产和分配固有的多方面环境复杂性。气候变化显着影响全球农业贸易动力,影响生产模式,市场可及性和经济韧性(Bozzola,Lamonaca和Santeramo 2023; Gouel and Laborde 2021; Lamonaca,Bozzola,Bozzola和Santeramo 2024)。这些影响是由气候引起的农作物产量,水的可用性和温度制度的变化而复杂的,从而改变了国际市场的供应和需求动态。值得注意的是,农业商品在生产和运输过程中产生的排放物跨越边界交易。这种体现在进口和进口的排放概念在当代文献中引起了人们的关注(Davis and Caldeira 2010)。最近的研究强调了气候变化与嵌入农业贸易领域的贸易排放之间的显着互连。,例如,Santeramo,Ferrari和Toteti(2024)探讨了实现气候变化和环境目标所需的复杂平衡,而无需采取贸易保护主义措施,从而强调了减轻排放的国际贸易政策的复杂性。li等。(2023)强调,尽管全球供应链的效率提高,但全球粮食消费模式的变化促成了温室气体排放的增加,强调了对可持续贸易实践的需求,以减轻环境影响。
摘要。乳腺癌是一种多方面的疾病,呈现出一个动态的生态系统,其中原发性肿瘤与其微环境、循环系统和远处器官错综复杂地相互作用。循环肿瘤细胞 (CTC) 从原发性肿瘤扩散到器官,如大脑、肺、肝脏和骨骼,经历各种命运:细胞死亡、细胞休眠或衰老。休眠细胞的特点是在细胞周期的 G 0 /G 1 期可逆性生长停滞,它们带来了重大挑战,因为它们逃避了常规治疗,并且随后可以重新唤醒,导致癌症复发。肿瘤休眠现象受肿瘤微环境、免疫调节和细胞适应的影响。新兴证据表明,与乳房切除术相比,保乳手术联合放射治疗具有更好的生存优势,这可能是由于“乳房归巢现象”。该假设认为残留的乳腺组织为重新激活的休眠细胞提供了一个利基,从而减少了远处转移。免疫疗法和生活方式的改变(包括饮食和运动)有望控制休眠细胞。了解休眠机制和开发靶向疗法对于实现长期缓解和潜在治愈乳腺癌至关重要。乳腺癌在人体内呈现为一个复杂的生态系统,类似于一个适者生存的繁荣社区。原发性肿瘤充当核心,与其微环境、外周循环和远处器官(尤其是骨髓)协调相互作用(1、2)。
简介:随着预期寿命的增加,老龄人口和痴呆症患病率也在增加。生长素释放肽是空间记忆和认知的关键调节剂。肠道微生物群可能会影响未酰化生长素释放肽 (UAG) 和酰化生长素释放肽 (AG) 的循环水平。因此,我们探索了老年痴呆症患者的肠道微生物群、AG 和认知健康之间的潜在关联。方法:招募了 40 名痴呆症患者和 40 名对照者。对 18 个样本进行使用 16S rRNA 测序的粪便微生物组分析。采用混合方法进行可靠的解释。结果:痴呆症患者的血清 AG 和 AG/UAG 比率增加。随着痴呆症患者中 AG 的增加,物种丰富度显著下降。长双歧杆菌、双形真杆菌、普拉梭菌、瘤胃乳杆菌和普氏菌导致了β多样性的显著差异。Blautia obeum 与简易精神状态检查 (MMSE) 相关,普拉梭菌与蒙特利尔认知评估 (MoCA) 量表相关。讨论:这项初步研究表明 AG、肠道微生物组和认知评分之间存在复杂的相互作用。AG 升高与痴呆和肠道菌群失调相对应,与肠脑轴错综复杂地相互联系。循环 AG 和相关的肠道微生物组可能是痴呆症的假定生物标志物。
认知障碍(COI)是多种脑部疾病的普遍并发症,受尚未完全阐明的复杂机制的基础。神经元,神经系统的主要细胞种群,协调认知过程并控制认知平衡。广泛的询问已引起了Foxo3a在COI中的参与。FOXO3A反式激活的调节级联反应涉及多个下游信号通路,包括线粒体功能,氧化应激,自噬和凋亡,统一影响神经元活性。值得注意的是,神经元FOXO3A的表达和活性通过各种模态进行调节,包括启动子的甲基化,蛋白质的磷酸化和乙酰化。此外,上游途径,例如pi3k/akt,sirt家族和多样的微RNA,与foxo3a错综复杂地接口,从而引发了神经元功能的改变。通过几种下游途径,FOXO3A调节神经元动力学,从而调节阿尔茨海默氏病,中风,缺血性脑损伤,帕金森氏病和创伤性脑损伤的COI的发作或改善。foxo3a是一个潜在的治疗认知靶标,临床药物或多个小分子已被初步证明具有间接影响FOXO3A的认知增强作用。特别值得注意的是多个随机,受控的安慰剂临床试验,这些试验说明了通过自噬调制可实现的显着认知增强。在这里,我们讨论了FOXO3A在神经元介导的COI和常见认知障碍疾病中的作用。
近年来抽象的可解释的机器学习(IML)迅速发展,提供了新的机会来提高我们对复杂地球系统的理解。iml不仅要进行预测,而且还试图阐明这些预测背后的推理,这超出了传统的机器学习。预测能力和增强透明度的结合使IML成为发现数据中可能被传统分析忽视的数据的有前途的方法。尽管具有潜力,但对该领域的广泛含义尚未得到充分的理解。同时,IML的快速扩散仍处于早期阶段,并伴随着粗心的应用实例。应对这些挑战,本文重点介绍了IML如何有效,适当地帮助地球科学家推进过程的理解 - 这些问题通常在对IML的更多技术讨论中经常被忽视。具体来说,我们在典型的地球科学研究中确定了IML的务实应用方案,例如在特定环境中量化关系,生成有关潜在机制的假设以及评估基于过程的模型。此外,我们提出了使用IML解决特定研究问题的一般和实用的工作流程。特别是,我们确定了使用IML的几个关键和常见的陷阱,这可能会导致误导性结论,并提出相应的良好实践。我们的目标是促进IML在地球科学研究中的更广泛,更谨慎和周到的整合,将其定位为一种有价值的数据科学工具,能够增强我们当前对地球系统的理解。
摘要越来越多地通过探索表观遗传机制,尤其是DNA甲基化来阐明阿尔茨海默氏病发病机理的复杂性。本综述全面调查了最新以人为中心的研究,这些研究研究了整个基因组DNA甲基化在阿尔茨海默氏病神经病理学中。对各种大脑区域的检查揭示了与Braak阶段和阿尔茨海默氏病进展相关的独特DNA甲基化模式。内嗅皮层由于其早期的组织学改变以及随后对海马等下游区域的影响而成为焦点。值得注意的是,在内嗅皮层中复杂地鉴定出与神经纤维缠结形成有关的Ank1高甲基化。此外,颞中回和前额叶皮层显示出对Hoxa3,Rhbdf2和MCF2L等基因的显着高甲基化,这可能会影响神经炎症过程。BIN1在晚期阿尔茨海默氏病中的复杂作用与改变的甲基化模式相关。尽管在研究之间存在差异,但这些发现突出了表观遗传修饰与阿尔茨海默氏病病理学之间的复杂相互作用。未来的研究工作应解决方法论上的差异,结合多样的人群,并考虑环境因素,以揭示阿尔茨海默氏病进展的细微表观遗传景观。关键词:阿尔茨海默氏病; ank1; bin1; DNA甲基化;全基因组的关联研究; Hoxa3; MCF2L; RHBDF2
肠道菌群与宿主生理学保持着深厚的共生关系,与内部(内源性)和外部(外源性)因素都复杂地接合。Anurans尤其是温带地区的Anurans面临着重大外部影响的双重挑战,例如冬眠和与不同的生活历史相关的复杂内部差异。在我们的研究中,我们试图确定日本皱纹青蛙(Glandirana Rugosa)的不同生命阶段(少年与成人)是否导致冬季(Hibernation)(Hibernation)的肠道细菌群落的明显转变以及随后向春季过渡。假设,我们观察到与成年同龄人相比,少年青蛙的肠道细菌多样性和丰度更为明显。这表明肠道环境在冬眠期间可能在成年青蛙中更具弹性或稳定。但是,这种明显的差异仅限于冬季。到春季,少年和成年青蛙的肠道细菌的多样性和丰度紧密排列。具体而言,冬季和春季之间肠道多样性和组成的差异似乎反映了青蛙的生态适应性。在冬眠期,蛋白质细菌的主导地位表明,强调支持细胞内的运输和维持稳态,而不是青蛙的主动代谢。相反,春季,细菌多样性的上升,加上富公司和细菌的占主导地位,表明新陈代谢后的新陈代谢活性兴起,有利于增强的养分同化和能量代谢。我们的发现强调,肠道微生物组与其宿主之间的关系是动态的和双向的。然而,肠道细菌多样性和组成的变化在多大程度上有助于增强青蛙中的冬眠生理,仍然是一个悬而未决的问题,需要进一步研究。
物理系,Vel Tech Rangarajan Sagunthala R&d科学技术研究所博士,Vel Nagar,Vel Nagar,Vel Nagar,Avadi,Avadi,Avadi,Chennai-600 062,泰米尔纳德邦,印度泰米尔纳德邦B,纳格尔斯(Nagercoil基础科学基础科学,VELS科学技术研究所和高级研究,钦奈Pallavaram 600 117 D PG&Research Togience of Physics,Paavendhar艺术与科学学院,M.V。南,塞勒姆(Thalaivasal),塞勒姆(Salem),泰米尔纳德邦(Tamil Nadu)636 121,印度e化学系,国王沙特大学(P.O. Box)。2455,Riyadh 11451,沙特阿拉伯F药学学院,Kangwon国立大学,Chuncheon,Gangwo-24341,大韩民国LA 2 Cuo 4 Perovskite纳米颗粒掺杂的铝含量由铝掺杂,通过微波燃料燃烧技术合成。 分别使用各种技术,包括XRD,EDX,VSM,DRS-UV,FT-IR和FESEM进行了有关结构,磁性,功能和形态学特性的全面研究。 尽管如此,Al 3+内容中的增强(X = 0-0.25)引起了一个值得注意的相位移位,从正骨到立方配置。 平均晶体尺寸从54到41 nm。 在大约687和434 cm -1处的不同ft-ir频带与矫正原状LA 2 CUO 4相固有的LA-O和Cu-O伸展模式错综复杂地联系在一起。 离子在表面中的运动2455,Riyadh 11451,沙特阿拉伯F药学学院,Kangwon国立大学,Chuncheon,Gangwo-24341,大韩民国LA 2 Cuo 4 Perovskite纳米颗粒掺杂的铝含量由铝掺杂,通过微波燃料燃烧技术合成。分别使用各种技术,包括XRD,EDX,VSM,DRS-UV,FT-IR和FESEM进行了有关结构,磁性,功能和形态学特性的全面研究。尽管如此,Al 3+内容中的增强(X = 0-0.25)引起了一个值得注意的相位移位,从正骨到立方配置。平均晶体尺寸从54到41 nm。在大约687和434 cm -1处的不同ft-ir频带与矫正原状LA 2 CUO 4相固有的LA-O和Cu-O伸展模式错综复杂地联系在一起。离子在表面通过Kubelka -Munk(K -M)方法确定的能量差距,与质量约束现象归因于Al 3+含量(1.67–1.72 eV)的高度伴随。在LA 2-X Al X CuO 4(X = 0至0.25)系统中,很明显,纳米级结晶晶粒的起源散布在谷物合并的孔中。滞后曲线的分析揭示了在环境温度下软铁磁行为的出现。(2023年11月13日收到; 2024年3月7日接受)关键字:LA 2 CUO 4纳米木制,钙钛矿,孔隙墙谷物,带隙,软铁磁1。引言纳米材料的特殊生理化学特征是其小尺寸的结果。因此,它们在许多应用中使用,例如光降解,催化等[1-4]。la 2 CuO 4是一种类似钙钛矿的物质,它因其在能量和环境领域的广泛潜在用途而引起人们的注意,包括陶瓷燃料电池,用于氧化和还原反应的电极材料,催化反应,催化,气体传感器,超导管,超导管分解和超导管器[5,6]。基于灯笼(LA 3+)的材料表现出更大的碳氧化活性。O 2-离子的晶格迁移率的增加可能与钙钛矿作为氧化催化剂的功能有关。
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。