能够分析算法的性能 能够为指定的应用程序选择合适的数据结构和算法设计方法 能够理解数据结构的选择和算法设计方法如何影响程序的性能 UNIT - I 简介:算法、性能分析-空间复杂度、时间复杂度、渐近符号-大 oh 符号、欧米茄符号、西塔符号和小 oh 符号。 分而治之:一般方法,应用-二分查找、快速排序、归并排序、施特拉森矩阵乘法。 UNIT - II 不相交集:不相交集合运算、联合和查找算法 回溯:一般方法、应用、n 皇后问题、子集和问题、图着色 UNIT - III 动态规划:一般方法,应用-最佳二叉搜索树、0/1 背包问题、所有对最短路径问题、旅行商问题、可靠性设计。第四单元贪婪法:通用方法,应用-有截止期限的工作排序,背包问题,最小成本生成树,单源最短路径问题。第五单元分支定界:通用方法,应用-旅行商问题,0/1背包问题-LC分支定界解决方案,FIFO分支定界解决方案。NP-Hard和NP-Complete问题:基本概念,非确定性算法,NP-Hard和NP-Complete类,Cook定理。教科书:
能够分析算法的性能 能够为指定的应用程序选择合适的数据结构和算法设计方法 能够理解数据结构的选择和算法设计方法如何影响程序的性能 UNIT - I 简介:算法、性能分析-空间复杂度、时间复杂度、渐近符号-大 oh 符号、欧米茄符号、西塔符号和小 oh 符号。 分而治之:一般方法,应用-二分查找、快速排序、归并排序、施特拉森矩阵乘法。 UNIT - II 不相交集:不相交集合运算、联合和查找算法 回溯:一般方法、应用、n 皇后问题、子集和问题、图着色 UNIT - III 动态规划:一般方法,应用-最佳二叉搜索树、0/1 背包问题、所有对最短路径问题、旅行商问题、可靠性设计。第四单元贪婪法:通用方法,应用-有截止期限的工作排序,背包问题,最小成本生成树,单源最短路径问题。第五单元分支定界:通用方法,应用-旅行商问题,0/1背包问题-LC分支定界解决方案,FIFO分支定界解决方案。NP-Hard和NP-Complete问题:基本概念,非确定性算法,NP-Hard和NP-Complete类,Cook定理。教科书:
• 数据取自 CalREDIE。根据《加州法规》第 17 章第 2505 节的规定,必须报告流感实验室结果,包括核酸扩增测试 (NAAT) 和非 NAAT 诊断测试(例如高通量抗原测试)的所有阳性和非阳性(阴性、不确定等)测试结果,这些测试结果均须在 CLIA 认证的设施(可执行非豁免(中等或高复杂度)测试)一天内报告。但是,实验室报告非阳性测试结果并不一致。因此,无法计算阳性率。
脑肿瘤分割是医学图像处理的最重要方法之一。非自动分割广泛应用于临床诊断和药物治疗。然而,这种分割在医学图像中不准确,特别是在脑肿瘤方面,而且可靠性较低。本文的主要目的是开发一种脑肿瘤分割方法。本文提出了一种卷积神经网络和模糊K均值算法的组合来分割脑肿瘤的病变区域。它包含三个阶段:图像预处理以降低计算复杂度、属性提取和选择以及分割。首先,使用自适应滤波器和小波变换对数据库图像进行预处理,以从噪声状态中恢复图像并降低计算复杂度。然后通过提出的深度神经网络进行特征提取。最后,通过模糊K均值算法进行处理,分别分割肿瘤区域。本文的创新之处在于实现具有最佳参数的深度神经网络,识别相关特征并删除不相关和重复的特征,目的是观察能够很好地描述问题的特征子集,同时尽量减少效率降低。这可以减少特征集,在操作过程中存储数据收集资源,并减少总体数据以限制存储需求。所提出的分割方法已在 BRATS 数据集上得到验证,准确率为 98.64%,灵敏度为 100%,特异性为 99%。
摘要。目的本研究的目的是研究各种通道注意力机制在脑机接口 (BCI) 领域用于运动想象解码的应用。通道注意力机制可以看作是传统用于运动想象解码的空间滤波器的强大进化。本研究通过将这些机制集成到一个轻量级架构框架中来系统地比较它们,以评估它们的影响。方法我们精心构建了一个简单而轻量的基线架构,旨在无缝集成不同的通道注意力机制。这种方法与以前的研究相反,以前的研究只研究一种注意力机制,通常构建一个非常复杂、有时是嵌套的架构。我们的框架使我们能够在相同情况下评估和比较不同注意力机制的影响。不同通道注意力机制的轻松集成以及低计算复杂度使我们能够在四个数据集上进行广泛的实验,以彻底评估基线模型和注意力机制的有效性。结果我们的实验证明了我们架构框架的强度和通用性,以及通道注意力机制如何在保持基线架构的小内存占用和低计算复杂度的同时提高性能。意义我们的架构强调简单性,提供通道注意机制的轻松集成,同时保持跨数据集的高度通用性,使其成为脑机接口中 EEG 运动意象解码的多功能高效解决方案。
我们考虑由小型自主设备组成的网络,这些设备彼此之间以无线方式进行通信。在设计此类网络的算法时,最小化能耗是一项重要的考虑因素,因为电池寿命是一种至关重要且有限的资源。在发送和接收消息都会消耗能量的模型中,我们考虑在任意且未知拓扑的无线电网络中寻找节点的最大匹配的问题。我们提出了一种分布式随机算法,该算法以高概率产生最大匹配。每个节点的最大能量成本为 O (log 2 n) ,时间复杂度为 O (∆ log n) 。这里 n 是节点数的任意上限,∆ 是最大度的任意上限;n 和 ∆ 是我们算法的参数,我们假设所有处理器都先验地知道这些参数。我们注意到,存在图族,对于这些图族,我们对能量成本和时间复杂度的界限同时达到多项对数因子的最优,因此任何重大改进都需要对网络拓扑做出额外的假设。我们还考虑了相关问题,即为网络中的每个节点分配一个邻居,以便在节点最终发生故障时备份其数据。此处,一个关键目标是最小化最大负载,其定义为分配给单个节点的节点数。我们提出了一种高效的分散式低能耗算法,该算法可以找到一个邻居分配,其最大负载最多比最优值大一个 polylog(n) 因子。
摘要 —本文利用实际数据讨论了光伏 (PV) 系统与电池储能系统 (BESS) 的优化设计。具体来说,我们确定了光伏板的最佳尺寸、BESS 的最佳容量以及 BESS 充电/放电的最佳调度,以使包括电费和光伏系统在内的长期总成本最小化。优化是通过考虑大量参数来执行的,例如能源使用、能源成本、天气、地理位置、通货膨胀以及太阳能电池板和 BESS 的成本、效率和老化效应。为了捕捉老化效应、通货膨胀和折现经济回报等长期因素的影响,该问题被表述为混合整数非线性规划 (MINLP) 问题,时间范围涵盖太阳能电池板和 BESS 的整个生命周期,约为十年或更长时间,而几乎所有现有的光伏系统设计工作都考虑了几天或几周的短得多的时间范围。将 MINLP 转化为混合整数线性规划 (MILP),并通过分支定界 (B&B) 算法进行求解。由于时间范围较长,MILP 的复杂度较高。然后,使用动态规划提出了一种新的低复杂度算法,其中表明 MINLP 问题可以转化为满足贝尔曼最优原理的问题。将新开发的算法应用于旧金山商业用户的实际数据表明,该系统在第 66 个月达到盈亏平衡点,并将系统总成本降低了 29.3%。
量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离
我们研究并行性如何加速量子模拟。提出了一种并行量子算法来模拟一大类具有良好稀疏结构的汉密尔顿量的动力学,这些汉密尔顿量称为均匀结构汉密尔顿量,其中包括局部汉密尔顿量和泡利和等各种具有实际意义的汉密尔顿量。给定对目标稀疏汉密尔顿量的 oracle 访问,在查询和门复杂度方面,以量子电路深度衡量的并行量子模拟算法的运行时间对模拟精度 ϵ 具有双(多)对数依赖性 polylog log(1 /ϵ )。这比以前没有并行性的最优稀疏汉密尔顿模拟算法的依赖性 polylog(1 /ϵ ) 有了指数级的改进。为了获得这个结果,我们基于 Childs 的量子行走引入了一种新的并行量子行走概念。目标演化幺正用截断泰勒级数近似,该级数是通过并行组合这些量子行走获得的。建立了一个下限Ω(log log(1 /ϵ )),表明本文实现的门深度对ϵ 的依赖性不能得到显著改善。我们的算法被用来模拟三个物理模型:海森堡模型、Sachdev-Ye-Kitaev 模型和二次量子化的量子化学模型。通过明确计算实现预言机的门复杂度,我们证明了在所有这些模型上,我们的算法的总门深度在并行设置下都具有 polylog log(1 /ϵ ) 依赖性。