录制和播放视频?这个比喻很恰当,因为盲视旨在将摄像机捕捉到的图像并由计算机处理后直接发送到人脑中产生视觉的部分。生物视觉:光线通过眼睛的晶状体聚焦到视网膜上。视网膜中的细胞将光线转换成电信号。这些电信号传输到视神经,视神经将这些电信号传送到大脑的视觉皮层。视觉皮层将这些电信号处理成我们看到的图像。摄像机视频录制:光线通过摄像机镜头进入并聚焦到图像传感器(CCD 或 CMOS)上。传感器将光线转换成电信号。来自图像传感器的电信号由系统微芯片和电路处理。这包括调整曝光、白平衡和其他设置。处理后的图像数据被数字化并存储在摄像机的内存或外部存储设备上。 Neuralink 将使用摄像头和计算机处理器来创建 Blind-sight 直接传输到大脑视觉皮层的电信号。人眼记录图像的方式与相机不同。我们的大脑对周围的世界产生连续的感知,但这种感知不会以数据的形式存储。
已有15年了,基因疗法一直被视为遗传性视网膜疾病的希望的灯塔。许多临床前研究都集中在具有最大基因表达能力的载体周围,但是尽管基因转移有效,但在各种纤毛病中仍观察到了最小的生理改善。色素型视网膜炎28(RP28)是FAM161A中Bi-Callelic null突变的结果,Fam161a是连接纤毛(CC)结构的必不可少的蛋白质。在缺席的情况下,纤毛杂乱无章,导致外部片段崩溃和视力障碍。在人类视网膜中,FAM161A有两个同工型:带外显子4的长度,而没有它的短。为了恢复FAM161A中的CC,在纤毛混乱开始后不久,我们将AAV载体与启动子活性,剂量和人类同工型进行了比较。虽然所有矢量都改善了细胞存活,但仅使用弱FCBR1-F0.4启动子启用了两种同工型的组合,启用了CC中的精确FAM161A升级和增强的视网膜功能。我们对RP28的FAM161A基因置换的调查强调了精确治疗基因调节,适当的载体给药和两种同工型的递送的重要性。此精度对于涉及FAM161A等结构蛋白的安全基因疗法至关重要。
1神经病学系,大学医院和Julius-Maximilians-Universitätwürzburg,Josef-Schneider-STR。 11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P. ); ip_c@ukw.de(c.w.i. ); volkmann_j@ukw.de(J.V.) 2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de1神经病学系,大学医院和Julius-Maximilians-Universitätwürzburg,Josef-Schneider-STR。11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P. ); ip_c@ukw.de(c.w.i. ); volkmann_j@ukw.de(J.V.) 2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P.); ip_c@ukw.de(c.w.i.); volkmann_j@ukw.de(J.V.)2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de
在视网膜变性疾病等视网膜炎色素,感光细胞等视网膜变性疾病中的挑战逐渐丢失,导致视力障碍,治疗方案非常有限。然而,内部视网膜神经回路持续存在,其余神经元可以使用靶向神经元蛋白的药物进行敏感。
1 波罗的海人工智能与神经技术中心,伊曼纽尔康德波罗的海联邦大学,236016 加里宁格勒,俄罗斯;s.kurkin@innopolis.ru (SAK);v.maksimenko@innopolis.ru (VAM);a.hramov@innopolis.ru (AEH) 2 伊诺波利斯大学机器人与机电一体化组件技术中心,420500 伊诺波利斯,俄罗斯; alexander.pisarchik@ctb.upm.es 3 下诺夫哥罗德罗巴切夫斯基国立大学神经技术系,603022 下诺夫哥罗德,俄罗斯 4 萨拉托夫国立医科大学心脏病学研究所创新心脏病信息技术系,410012 萨拉托夫,俄罗斯 5 马德里理工大学生物医学技术中心,波苏埃洛德阿拉尔孔,28223 马德里,西班牙 * 通信地址:plo@sstu.ru † 这些作者对这项工作做出了同等贡献。
我们描述了一名70岁妇女的情况,该妇女发展出跨层皮质,V1和相关视觉关联皮层的脑梗塞。她出现了对物体的重复图像,较低的保真度和原始(Polyopia)的透明副本的视觉感知障碍,与全息图非常相似。我们抓住了这个机会来解释这些虚假图像的产生。这使我们得出了不少于壮观的自动脑理论,该理论解释了大脑的高度熵,大脑皮层中数据的存储,大脑组织的等电位性以及大脑计算算法和感知感觉的能力。人脑的这种显着能力需要在大脑皮层的高度相互连接和密集的树突树中的数学傅立叶变换和电势势的部署。这里探索的想法是崇高的。这些阴谋被认为是在自然界深深地根深蒂固的。不少于黑洞和宇宙本身。我们的案例以图形和生动的方式为大脑功能的全息模型提供了证据。
钦奈,印度在Booma Devi博士的指导下摘要: - 综合是材料科学工业的新增长,主要是飞机工业,低成本所需的材料,重量较小,但应具有高强度以提高飞机的效率,甚至在汽车工业中。上述内容的解决方案仅是复合材料。该项目提供了用碳纤维和切碎的玻璃纤维用环氧树脂加固的碳纤维机械性能的制造和研究。在此过程中,制造是通过手工层次的方法进行的,碳,切碎的玻璃和电子玻璃纤维的随机取向。此外,在样品上进行了机械测试,例如拉伸试验,弯曲试验和腐蚀测试,以研究复合材料的机械性能。从研究中可以看出,碳纤维三明治复合材料被证明是一种有效的复合材料,具有更具耐腐蚀性和环境友好的耐受性,可用于更大的海水暴露区域。关键字: - 碳纤维复合材料;弯曲测试;拉伸测试;腐蚀;
本次研究中,西口浩司副教授和中泽徹教授领导的研究小组建立了一种创新的基因治疗技术,使以前需要多个 AAV 才能进行的基因组编辑仅需一个 AAV 即可完成。当将该基因治疗技术应用于基因组编辑较为困难的神经系统疾病小鼠模型时,基因组编辑效率显著提高,并取得了较高的治疗效果。在这项新的基因治疗技术中,基因组编辑所需的组件已经被微型化,使得之前分离到两个 AAV 中的基因组编辑所需的组件可以合并到单个 AAV 中(图 1B)。 具体来说,通过利用微同源介导末端连接(MMEJ)作为基因组修复机制来插入正常序列,使用最少量的包含正常序列的DNA准确地修复基因组。当将这种 AAV 注射到患有完全失明视网膜变性的成年小鼠体内时,大约 10% 的致病突变得到正常化,光敏感度提高了 10,000 倍,视力恢复到正常值的约 60%(图 2)。此外,该疗法表现出与传统基因替代疗法相当的治疗效果,证明了这种新疗法的实用性。这一成果为基因疗法的发展铺平了道路,不仅针对以前无法治愈的视网膜色素变性,也针对许多其他遗传疾病。