1神经病学系,大学医院和Julius-Maximilians-Universitätwürzburg,Josef-Schneider-STR。 11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P. ); ip_c@ukw.de(c.w.i. ); volkmann_j@ukw.de(J.V.) 2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de1神经病学系,大学医院和Julius-Maximilians-Universitätwürzburg,Josef-Schneider-STR。11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P. ); ip_c@ukw.de(c.w.i. ); volkmann_j@ukw.de(J.V.) 2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de11,97080 Dem,德国Würzburg; pozzi_n2@ukw.de(N.G.P.); ip_c@ukw.de(c.w.i.); volkmann_j@ukw.de(J.V.)2人类大学生物医学科学系,Pieve Emanuele,20072年意大利米兰; francesco.bolzoni@unimi.it 3分子生物成像与生理学研究所,CNR,通过Fratelli Cervi 93,20090意大利米兰; gembiella@gmail.com 4 Centro Parkinson E Parkinsonismi,Asst G. Pini-Cto,20072年意大利米兰; pezzoli@parkinson.it 5病理生理学和移植系,人类生理学科,degli decli di Milano大学,通过Mangiagalli 32,20133,20133年意大利米拉诺; paolo.cavallari@unimi.it 6解剖学和细胞生物学研究所,Julius-Maximilians-Universitätwürzburg,Koellikerstr 6,97070Würzburg,德国; esther.asan@uni-wuerzburg.de *通信:isaias_i@ukw.de
2020 年,美国能源部 (USDOE) 提出了一项以储能为重点的重大挑战,这是该机构首次提出的综合性方法。[1] 鉴于锂离子电池技术在解决短储能时长(<4 小时)方面取得的成功,[2] 储能研究的重点已转向长储能方法,这种方法倾向于将电力和能源分离以实现灵活的电网安装。液氢载体是一种可以利用现有基础设施并利用质子交换膜 (PEM) 燃料电池的高效率/成熟度在需要时释放储存能量的方法。[3] 为此,我们专注于肼 (N2H4),它含有 12.5% 的 H2(重量),已被纳入燃料电池应用。[4,5] 虽然 N2H4 可以通过多种工艺在工业上生产,但它通常是通过 NH3 的氧化制成的,而 NH3 目前的基础设施和碳足迹相当可观。[6] 如果
金属配位导向大环复合物,其中大环结构由金属-配体配位相互作用形成,已成为一种有吸引力的超分子支架,可用于创建生物传感和治疗应用材料。尽管最近取得了进展,但不受控制的多环笼和线性低聚物/聚合物是最有可能的金属配体组装产物,这对当前的合成方法提出了挑战。本文我们概述了使用可折叠配体或通过组装两亲配体合成金属配位导向大环复合物的最新合成方法。这篇小综述为高效制备具有可预测和可控结构的金属配位导向大环复合物提供了指导,这些复合物可在许多与生物相关的领域得到应用。
什么是植入式心脏复律除颤器 (ICD)?ICD 是一种植入于胸腔皮下的电子设备,用于监测和治疗危险的快速心律。大多数 ICD 也具备起搏器的功能。ICD 比起搏器略大,由两个主要部件组成:发生器和一根或多根导线(称为“导线”)。发生器包含电池、电容器和计算机组件,使 ICD 工作。导线是特殊的导线,使设备能够传输微弱的电脉冲,从而引起心脏收缩,并持续监测心律。ICD 可以植入一根、两根或三根导线。您接受的 ICD 类型取决于您的临床诊断。经静脉 ICD 植入于左锁骨下方,但也可能植入于右锁骨下方,导线通过静脉插入心脏。
本文介绍了 DeepFLASH,一种用于基于学习的医学图像配准的高效训练和推理的新型网络。与从高维成像空间中的训练数据中学习空间变换的现有方法相比,我们完全在低维带限空间中开发了一种新的配准网络。这大大降低了昂贵的训练和推理的计算成本和内存占用。为了实现这一目标,我们首先引入复值运算和神经架构表示,为基于学习的配准模型提供关键组件。然后,我们构建了一个在带限空间中完全表征的变换场的显式损失函数,并且参数化要少得多。实验结果表明,我们的方法比最先进的基于深度学习的图像配准方法快得多,同时产生同样精确的对齐。我们在两种不同的图像配准应用中展示了我们的算法:2D 合成数据和 3D 真实脑磁共振 (MR) 图像。我们的代码可以在https://github.com/jw4hv/deepflash上找到。
摘要:金属配合物的化学性质在很大程度上取决于与金属中心配位的配体的数量和几何排列。现有的确定配位数或几何形状的方法依赖于准确性和计算成本之间的权衡,这阻碍了它们在大型结构数据集研究中的应用。在此,我们提出了 MetalHawk ( https://github.com/vrettasm/MetalHawk ),这是一种基于机器学习的方法,通过人工神经网络 (ANN) 同时对金属位点的配位数和几何形状进行分类,这些网络使用剑桥结构数据库 (CSD) 和金属蛋白数据库 (MetalPDB) 进行训练。我们证明,CSD 训练的模型可用于对属于最常见配位数和几何形状类别的位点进行分类,对于 CSD 沉积的金属位点,平衡准确度等于 96.51%。我们还发现,CSD 训练模型能够对 MetalPDB 数据库中的生物无机金属位点进行分类,在整个 PDB 数据集上的平衡准确度为 84.29%,在 PDB 验证集中手动审核的位点上的平衡准确度为 91.66%。此外,我们报告的证据表明,CSD 训练模型的输出向量可以被视为金属位点扭曲的代理指标,表明这些可以解释为金属位点结构中存在的细微几何特征的低维表示。
• 强大的生物类似药管线 • 商业化产能达到48,000L,同时通过中国和欧盟GMP认证 • 达成多项生物类似药全球授权协议 • 曲妥珠单抗在30多个国家获批
我们提出了一个准多项式时间经典算法,用于估计在热相变点以上温度下量子多体系统的配分函数。众所周知,在最坏情况下,同样的问题在该点以下是 NP 难的。结合我们的工作,这表明量子系统相位的转变也伴随着近似难度的转变。我们还表明,在相变点以上的 n 个粒子系统中,距离至少为 Ω(log n)的两个可观测量之间的相关性呈指数衰减。当哈密顿量具有交换项或在一维链上时,我们可以将 log n 的因子改进为常数。我们结果的关键是用配分函数的复零点来表征相变和系统的临界行为。我们的工作扩展了 Dobrushin 和 Shlosman 的开创性工作,该工作涉及经典自旋模型中相关性衰减与自由能解析性之间的等价性。在算法方面,我们的结果扩展了 Barvinok 提出的一种用于解决量子多体系统经典计数问题的新方法的范围。
