更好。场镜和聚光镜中央区域的表面质量应为 20-5,外区的表面质量应为 40-15。目镜的中心透镜中央区域的表面质量应为 40-15,外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。当场镜和目镜相同时,两者的表面质量应为中央区域 20-5,外区 40-15。位于目镜和出瞳之间的滤光片中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜相同的要求。位于物镜前方的滤光片的表面质量应为 80-50 或更好。
更好。视场透镜和聚光透镜在中心区域的表面质量应为 20-5,在外区的表面质量应为 40-15。目镜的中心透镜在中心区域的表面质量应为 40-15,在外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。当视场透镜和目镜相同时,两者的表面质量在中心区域应为 20-5,在外区的表面质量应为 40-15。位于目镜和出瞳之间的滤光片在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜规定的相同要求。位于物镜前方的滤光片的表面质量应为 80-50 或更高。
摘要。通过将合金组成(x)从0更改为0到1,可以将Al X GA 1 -X N合金的能量带隙从〜3.4到6.1 eV进行系统调整,并且直接带隙性质在整个合金组合范围内保持在整个合金范围内,这些合金范围使Algan合金合适的材料可将光的光发射二号(LED)覆盖21 uptiover(uld)覆盖21 uptiols(U 21)。对于深紫外区(λ<300 nm)中的LED,需要高于50%的Al含量的Al含Algan合金。深紫外线LED在广泛的领域具有应用,包括显示,消毒,医疗,感应和通信。随着材料生长和电导率的最新进展,富含Al的Algan合金已成为独特的宽带间隙材料,用于开发深紫外线LED。在这篇评论文章中,富含艾尔根合金的进展如何在材料的增长和电导率方面取得了审查,导致其出现作为深色紫外线材料的出现。还将讨论深紫外线LED的挑战和前景,以提高设备的性能。
使用化学浴沉积合成 ZnO 薄膜并研究物理化学性质 Pooja B.更多,1 Sanjay B. Bansode,1 Mariya Aleksandrova,2 Sandesh R. Jadkar 1 和 Habib M. Pathan 1,* 摘要 在目前的研究中,我们在 70°C 温度下通过化学浴沉积法 (CBD) 在 FTO(氟掺杂氧化锡)基板上合成了 ZnO 薄膜。X 射线衍射研究表明,ZnO 薄膜具有六方纤锌矿结构,沿 (002) 方向有纹理。此外,扫描电子显微镜证实了沿垂直(c 轴)方向取向的微米级棒的形成。此外,还检查了各种光学和光电化学 (PEC) 特性。从紫外-紫外光谱分析可知,ZnO 薄膜的光学带隙为 3.1 eV。光致发光光谱显示,沉积的薄膜在紫外区具有尖锐的发射,在可见光区具有宽发射,这可能与 ZnO 中的缺陷有关。电化学阻抗谱表明,在光照下,ZnO 薄膜表现出较高的光电流密度的 PEC 性能。计时电流法显示,光电流密度随时间变化的稳定性测试为 60 μA/cm 2 。此外,莫特-肖特基曲线证实,沉积的 ZnO 薄膜为 n 型,载流子密度为 8.55×10 18 cm -3 。
具有C 2 位对称性的[YO 6 ] 9 局域单元。17 Y 2 O 3 晶体在掺杂适当稀土离子后,由于其高热导率和低声子能量,可以作为良好的激光基质材料。18 近年来,Ho 3+ 掺杂的Y 2 O 3 (Y 2 O 3 :Ho)晶体作为一种很有前途的激光材料受到了广泛的研究。19 Laversenne 等人首次利用激光加热基座生长 (LHPG) 技术生长了Ho 3+ 掺杂的Y 2 O 3 单晶。20 此外,他们还特别分析了Y 2 O 3 :Ho的动态激光谐振特性。秦等人研究了Ho 3+掺杂的Y 2 O 3 在532 nm 连续波激光激发下的发光光谱。 21结果表明Ho3+离子在紫外和紫外区(306、390和428nm)有多个荧光跃迁,这些跃迁分别归属为3D3/5I8、5G4/5I8和5G5/5I8的跃迁。Wang等人报道了在2.1mm左右的Y2O3:Ho实现了高输出激光操作,具有低散射损耗和优异的光学质量。22他们的结果表明Ho3+掺杂的Y2O3体系作为激光增益介质在高功率和高效激光应用中展现出诱人的前景。尽管对Y2O3:Ho已经有大量研究报道,但还没有系统的研究来阐明其微观结构和电子特性。本文基于 CALYPSO(粒子群优化晶体结构分析)23 – 27 方法结合 DFT(密度泛函理论),对 Y 2 O 3 : Ho 进行了广泛的结构搜索,获得了基态结构。此外,我们计算并分析了能带结构、态密度和 ELF(电子局域化
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]