图3:(a)这项工作中使用的四分之一波谐振器(QWR)。象限已被切除,以确保内部清晰度。零件的三个内部特征以降序的重要性顺序:红色中心销(CP),蓝色短板(SP)和紫色外导体(OC)。绿色外部测试表面(TS)对RF性能没有影响,并且用于表面纹理参考测量值。(b)对数尺度上磁场分布的COMSOL模拟,表明65%的电磁能集中在中心销(CP)周围。因此,CP的物理特性(表面表面和几何形状)对于QWR的功能性能至关重要[25]。所示的所有维度均以毫米为单位。
对于实际测量,我们使用了图1所示的设置。它由:(i)控制信号生成和数据采集的笔记本计算机; (ii)带有集成的任意波形发生器的USB示波器(TIEPIE HANDYSCOPE HS5-540)。将从神经刺激器记录的波形发送到任意波形发生器,并使用示波器从(iii)拾取测量信号; (iii)一个测量前端包含: - 将刺激脉冲应用于电极和组织的电压控制的电流源 - 一种测量差分放大器,该放大器测量了电极和组织的电压, - 一种差分放大器,可测量刺激电流的电压降低,以使电阻跨传感电阻器[8]; (iv)双极同轴脑刺激电极(Inomed BCS 45mm 30°)连接到电压控制电流源。电极是带有未绝缘外导体的开放式同轴探针。它的末端具有30°弯曲,长45毫米。电缆长度为3 m。由于其长度,它产生了不必要的寄生能力。如果导体只是略有非圆形[5],则会发生这种现象。补偿电极阻抗时,需要考虑这一点。但是,在本文的背景下,呈现原则的证明,这可以忽略不计。
对于实际测量,我们使用了图 1 中所示的设置。它包括:(i) 一台笔记本电脑,用于控制信号生成和数据采集;(ii) 一台 USB 示波器(TiePie Handyscope HS5-540),带有集成的任意波形发生器。从神经刺激器记录的波形被发送到任意波形发生器,示波器用于拾取来自 (iii) 的测量信号;(iii) 测量前端,包含:- 电压控制电流源,用于将刺激脉冲施加到电极和组织,- 差分放大器,用于测量电极和组织之间的电压,- 差分放大器,用于测量刺激电流作为传感电阻器两端的电压降 [8];(iv) 连接到电压控制电流源的双极同轴脑刺激电极(Inomed BCS 45mm 30°)。电极是一个带有非绝缘外导体的开放式同轴探头。其末端弯曲 30°,长 45 毫米。电缆长度为 3 米。由于其长度,它会产生不必要的寄生电容。如果导体略微不呈圆形,就会发生这种现象 [5]。在补偿电极阻抗时,需要考虑这一点。然而,在本文的背景下,提出一个原理证明,这是可以忽略不计的。