本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
研究了LA 0.67 SR 0.33 MNO 3(LSMO)外延膜随着不同温度下厚度的函数的阻尼。具有完全不同的厚度和温度依赖性的两种散射类型之间的竞争导致了复杂的阻尼行为。LSMO膜中的the the行为与磁性金属膜中的行为一致。但是,由于𝜌喜欢阻尼对费米表面附近的细电子结构敏感,所以由膜厚度控制的氧气八面体的变形是控制阻尼的重要因素。我们的研究表明,LSMO外延膜中阻尼的复杂性是强相关效应的结果,这是复杂过渡金属氧化物的特征。
摘要:可用性和可靠的干燥传感器或脑电图(EEG)对于实现大规模部署O脑 - 机器 - 机器Interdace(BMIS)至关重要。但是,与黄金标准AG/AGCL湿传感器相比,干燥传感器总是显示出较差的per肿。当监视信号摩毛和弯曲区域时,使用干燥传感器的损失更为明显,需要使用obulkyand tobledobledortable cacicular传感器。这项工作证明了基于厚度厚的外延石墨烯或检测脑电信号的三维微图案传感器。对应于视觉皮层的大脑的枕骨区域是基于公共稳态的视觉诱发潜在范式实现OBMI的关键。图案化的外延石墨烯传感器显示出具有低阻抗的皮肤接触,并且可以实现与湿传感器相比的信噪比。使用这些传感器,我们还通过大脑活动展示了与四倍的机器人的无动用通信。关键字:大脑 - 机器界,脑 - 机器人互隔离,外延石墨烯,光刻,微图案传感器,脑电图
太阳能转换过程不仅存在于太阳能电池中,也存在于光催化中,涉及太阳光收集和光激发电荷载流子分离/传输。[8,9] 异质结构是将具有不同性质的材料集成在一起,通常可以收集来自多种组分的广泛太阳光,并且受益于异质界面形成的内部电场而具有显著的光激发电荷分离/传输特性。[10] 因此,探索合适的组分来构建异质结构是提高太阳能转换效率的一种有效且简便的策略。如今,二维材料由于其高比表面积、[11] 大量的表面暴露原子、[12] 以及优异的机械、光学和电子性能,在光电器件、催化和太阳能转换领域引起了极大的研究兴趣。[13,14] 得益于层状结构特性,二维材料易于构建成异质结构。通常,二维异质结构包括垂直异质结构(其中各种二维材料层垂直堆叠)[15] 和横向异质结构(其中多个二维材料横向无缝缝合)。[16] 目前报道的二维异质结构大多
通过低温扫描隧道显微镜和光谱学的低温扫描隧道显微镜和光谱研究,已经研究了在RU(0001)上生长的纳米结构上的外延地石墨烯(纳米结构上的外延石墨烯)上的非成激素的表面光学。存在空间位于前体被吸附的区域中的空间位置,并在电磁频谱区域进行努力访问的区域,在那里进行N-π *跃迁,允许将前体转化为100%。在最新的理论计算的帮助下,我们表明,这种高收率是由于传入的光以及随之而来的电子转移到前体的无弹性散射机制的有效人数。我们的发现是实验证实,表面状态可以在复杂的表面光化学中发挥重要作用
2012 年至今 德克萨斯大学奥斯汀分校 Seth R. Bank 教授 研究生助理 先进半导体外延实验室 – 研究和开发使用分子束外延的高应变 III-V 和稀释双胺 III-V 半导体中红外(3-5 µm)光电材料和器件的晶体生长技术。 – 演示了具有无铝有源区的 GaSb 基 I 型二极管激光器的最长波长发射(>3.6 µm)。 – 演示了 GaInAsSbBi 合金的首次外延生长和首次室温光致发光。 – 开发了基于 III-V 的半导体激光器的器件生长和制造工艺。 – 设计和实施工具和技术来维护、修理和操作两个分子束外延系统,同时避免耗时的真空系统烘烤。 – 设计并建造了具有亚皮秒分辨率的泵浦探测传输测试台,用于测量半导体中的载流子复合寿命。 – 通过添加自动测试功能改进了多个实验测试站。 – 将未充分利用的实验室空间改造成傅里叶变换红外 (FTIR) 光谱和红外显微镜分析站。 – 监督和指导参加夏季和学期研究体验的八个人的工作。
b'在室温下,已证实 GaN 半导体中 1.5 \xce\xbc m 电信波长的稀土激光作用。我们已报道了在上述带隙激发下,通过金属有机化学气相沉积制备的 Er 掺杂 GaN 外延层产生的受激发射。使用可变条纹技术,已通过发射强度阈值行为作为泵浦强度、激发长度和光谱线宽变窄的函数的特征特征,证实了受激发射的观察。使用可变条纹设置,在 GaN:Er 外延层中已获得高达 75 cm 1 的光增益。GaN 半导体的近红外激光为光电器件的扩展功能和集成能力开辟了新的可能性。'
摘要。必须研究用于陆地环境中高可靠性应用的电子设备,必须研究中子引起的单个事件效应。在本文中,在ISIS-Chipir辐射后,对包装商业SIC Power MOSFET的大气样中性诱导的单事件倦怠(SEB)进行了实验性观察。建立了SEB在MOSFET的电性能中的影响,并通过扫描电子显微镜观察到SIC损坏的区域。基于在模具级别的失败分析,可以定义SEB机制期间的不同阶段。敏感体积,其中二级粒子沉积了足够的能量以触发SEB机制,并位于SIC N-Drift外延层附近附近的SIC N-Drift外延层中。
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。
如今,制造商必须同时处理大量信息,以高度准确的水平与工业革命的高发展速度保持同步。这一需求导致了机器人的发明 - 在发展的各个方面,几乎每个方面都是人类的宝贵助手。1在rst,创建机器人是为了支持集会线的人;但是,他们可以执行更复杂的任务,例如制造,娱乐,交付处理等。2 - 4,无论根据实际要求,各种形状和大小如何,机器人都用两个主要组成部分制造:机械细节和编程,因此请ware。5个信息通过这些零件收集的信息已处理并转移给董事。6