与其六角形对应物不同的菱形堆叠的过渡金属二色元(3R-TMD)表现出较高的载流子迁移率,滑动铁电性,并相干增强了非线性光学响应。然而,很难大型多层单晶单晶的表面外延生长。我们报告了一种界面外观方法,用于它们的几种成分,包括二硫化钼(MOS 2),二苯胺钼,二硫化牛二硫化物,二硫化钨,二硫代二硫化钨,二硫化二硫化物,二硫化硫化物,二氮氮化物,二氧化氢和丙二氧化氢脱硫酸盐。将金属和果酱饲喂持续到单晶Ni底物和生长层之间的界面可确保一致的3R堆叠序列,并从几层到15,000层受控厚度。全面的特征证实了这些薄膜的大规模均匀性,高结晶度和相位纯度。生长的3R-MOS 2分别显示出双层和三层的室温迁移率最高为155和190平方厘米。具有厚3R-MOS 2的光学差异频率产生在准相匹配条件下显示出明显增强的非线性响应(比单层大5个数量级)。t
拓扑绝缘体是凝聚态物理学中很有前途的材料,因为它们具有特殊的自旋结构,可以产生非常高的自旋到电荷电流相互转换,这对于新兴的低能耗自旋电子学器件具有重要意义。本研究的目的是探索一类有前途的拓扑材料,这些材料具有高可调性等独特特性——半赫斯勒。我们专注于 PdYBi 和 PtYBi 薄膜的外延生长,这些薄膜是在一系列互连的 UHV 装置上生长和表征的,这使我们能够获得一整套原位表面表征,例如电子衍射、扫描隧道显微镜和角度分辨光电子能谱。使用标准 x 射线衍射和扫描透射电子显微镜进行非原位结构表征,用于控制薄膜中的晶体质量和化学有序性。进行了角分辨光电子能谱分析,结果显示布里渊区点附近存在线性状态。此外,我们使用设计了几何形状的片上器件进行热自旋传输测量,以控制热传播,以测试我们化合物的潜在相互转换效率,发现 PdYBi 和 PtYBi 在不同厚度下的自旋塞贝克系数值都大于铂。这一观察结果为使用半赫斯勒开发高效自旋相互转换材料开辟了道路。
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
我们报告了通过在硅衬底上外延生长的最初均匀的硅锗 (SiGe) 薄膜中进行相位分离直接激光写入渐变折射率光波导。我们使用了波长为 532 nm 的连续波 (CW) 激光器。激光束聚焦到厚度为 575 nm、Ge 浓度为 %50 的 SiGe 薄膜表面上直径为 5 µm 的光斑。通过熔化表面来诱导 SiGe 薄膜的成分分离,并通过将激光诱导熔化区的扫描速度控制在 0.1-200 mm/s 的范围内来调整成分分布。在高扫描速度下,扫描激光束会产生移动的富 Ge 熔化区,由于扩散限制的 Ge 传输不足,Ge 含量会在后缘积聚。材料特性表明,激光加工的 SiGe 微条带由富含 Ge 的条带芯(> 70% Ge)和富含 Si 的底层包层(<30% Ge)组成。扫描速度相关的相位分离允许制造具有可调成分分布的渐变折射率 SiGe 波导,这些波导通过光学传输测量和使用模拟的模式分析来表征。我们的方法还可以应用于三元半导体 (AlGaAs) 的伪二元合金,其平衡相图与 SiGe 合金的平衡相图相似。
摘要:具有强垂直磁各向异性 (PMA) 的磁绝缘体在探索纯自旋流现象和开发超低耗散自旋电子器件中起着关键作用,因此它们在开发新材料平台方面非常有吸引力。在这里,我们报告了具有不同晶体取向的 La 2/3 Sr 1/3 MnO 3 (LSMO)-SrIrO 3 (SIO) 复合氧化物薄膜 (LSMIO) 的外延生长,该薄膜通过脉冲激光沉积的连续双靶烧蚀工艺制成。LSMIO 薄膜表现出高晶体质量,在原子级上具有 LSMO 和 SIO 的均匀混合物。观察到亚铁磁和绝缘传输特性,温度相关的电阻率与 Mott 可变范围跳跃模型很好地拟合。此外,LSMIO 薄膜表现出强的 PMA。通过进一步构建亚铁磁绝缘体LSMIO和强自旋轨道耦合SIO层的全钙钛矿氧化物异质结构,观察到显著的自旋霍尔磁阻(SMR)和自旋霍尔类异常霍尔效应(SH-AHE)。这些结果表明亚铁磁绝缘体LSMIO在开发全氧化物超低耗散自旋电子器件方面具有潜在的应用价值。关键词:钙钛矿氧化物,磁性绝缘体,垂直磁各向异性,自旋霍尔磁阻,自旋电子学■引言
随着芯片结构系统的功率需求不断增长,由于其低功率泄漏,超薄体越来越重要。硅启动器(SOI)技术用于制造此类超薄平台。但是,当代的SOI过程和晶圆本身是复杂而又是典型的。在这项研究中,我们开发了一种简单的SOI制造工艺,可以使用商业实施的减少压力化学物质沉积技术在散装硅晶片的任何所需的局部实施。通过硅的选择性外延生长制造了局部SOI,它也可以在用1μm宽的硅种子区和蚀刻剂的蚀刻剂侧面横向生长,尺寸为20×100μm。局部SOI通过化学机械抛光处理至100 nm或更少的厚度,表现出高度结晶状态,这是由横截面成像和衍射模式分析,表面粗糙度分析和广泛的表型分析所确定的。局部SOI在优化的工艺条件下,表现出0.237 nm的表面粗糙度,并保持了与硅晶片相同的完美(100)晶体平面。我们在当前的本地SOI上成功制造了可重新配置的晶体管,这意味着当代硅电子可以在其自己的平台上利用SOI设备。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
摘要:半导体纳米晶体中电子和空穴之间的静电相互作用 (EI) 强度对其光电系统的性能有重大影响,不同的光电器件对活性介质的 EI 强度有不同的要求。然而,实现特定光电应用的 EI 强度的大范围和微调是一项艰巨的挑战,特别是在准二维核壳半导体纳米片 (NPL) 中,因为沿厚度方向的无机壳外延生长仅对量子限制效应有贡献,但却会严重削弱 EI 强度。在此,我们提出并展示了一种双梯度 (DG) 核壳结构的半导体 NPL,通过平面内结构调制控制局部激子浓度来按需调整 EI 强度,这通过对辐射复合率和激子结合能的广泛调整得到了证明。此外,这些激子浓度设计的 DG NPL 还表现出接近 1 的量子产率、高光和热稳定性以及显著抑制的自吸收。作为概念验证演示,基于 DG NPL 实现了高效的颜色转换器和高性能发光二极管(外部量子效率:16.9%,最大亮度:43,000 cd/m 2)。因此,这项工作为高性能胶体光电器件应用的开发提供了见解。关键词:半导体纳米片、接近 1 的量子产率、可定制的静电相互作用、高稳定性、光电子学
氧化镓 Ga 2 O 3 是一种很有前途的半导体电子材料。近年来,对其性质和合成技术进行了广泛的研究 [1,2]。不幸的是,对其外延生长的研究只集中在一个狭窄的最佳条件范围内。具体来说,还没有发表过关于宽区间温度变化对沉积速率影响的数据。这些数据对于彻底了解金属有机气相外延 (MOVPE) 的机制、充分考虑整个反应器容积内的化学和物理过程以及优化外延反应器的几何形状是必需的。在本研究中,研究了 MOVPE 中 Ga 2 O 3 沉积速率对宽区间温度变化的依赖关系。将获得的结果与众所周知的 GaN 和金属镓 (三甲基镓的单独热解) 的依赖关系进行了比较。为了排除反应器设计和温度测量方法对结果的影响,我们在类似条件下直接在同一反应器中测量了这些依赖关系。与任何其他化学气相外延工艺一样,MOVPE 中的沉积速率对温度的依赖性也具有三个明显的部分。在低温下,沉积速率受表面化学反应速率控制。这种生长方式称为动力学受限方式。在最简单的情况下,阿伦尼乌斯曲线的线性部分与之相对应。在存在分子氢甚至原子氢的情况下,动力学部分向低温(与金属有机化合物的单独热解依赖性相比)移动,这些氢可能由 V 族氢化物提供。在较高温度下,沉积速率受组分向表面的传输控制。
摘要:电子束自由曲面制造是一种送丝直接能量沉积增材制造工艺,其中真空条件可确保对大气进行出色的屏蔽并能够加工高反应性材料。在本文中,该技术应用于 α + β 钛合金 Ti-6Al-4V,以确定适合坚固构建的工艺参数。基于所选工艺参数,单个焊珠的尺寸和稀释度之间的相关性导致重叠距离在焊珠宽度的 70-75% 范围内,从而产生具有均匀高度和线性堆积速率的多焊珠层。此外,使用交替对称焊接序列堆叠具有不同数量轨道的层允许制造墙壁和块等简单结构。显微镜研究表明,主要结构由外延生长的柱状前 β 晶粒组成,具有一些随机分散的宏观和微观孔隙。所开发的微观结构由马氏体和细小的 α 层状结构混合而成,硬度适中且均匀,为 334 HV,极限抗拉强度为 953 MPa,断裂伸长率较低,为 4.5%。随后的应力消除热处理可使硬度分布均匀,断裂伸长率延长至 9.5%,但由于热处理过程中产生了细小的 α 层状结构,极限强度降至 881 MPa。通过能量色散 X 射线衍射测量的残余应力表明,沉积后纵向拉伸应力为 200-450 MPa,而进行应力消除处理后应力几乎为零。