对抗生素的耐药性是自1940年代引入青霉素以来1的自然现象。每当出现临床相关的抗药性时,就可以通过对现有药物的交叉阻力有限或引入新类别2的现有抗生素类别进行修改解决问题。早期的抗生素发现计划的相对便利以及在不充分考虑社会后果的情况下浪费了浪费和不批判性地使用抗生素的经济奖励3。在这个“黄金抗生素时代”之后,大型制药公司面临着主要的科学挑战,以寻找新的抗生素,尤其是在革兰氏阴性细菌中需要高抗生素剂量的penetra屏障和外排机制,这些抗生素需要具有潜在相关毒性问题的高抗生素剂量。这些公司最终从1980年代开始放弃抗菌药物发现活动。此外,他们对不承诺不断增加市场增长和利润的领域失去了兴趣。大型制药公司退出,引起了科学家,卫生保健社区,民间社会拥护者和政策制定者的关注。5,6。由于研究和发展的时间表很长,只有知道全球活动(并且缺乏
当前研究癌症耐药性治疗的研究方法概述随着分子靶向疗法,免疫疗法,化学疗法和放射疗法的发展已取得了重大进展[1]。 靶向药物 - 由分子靶向疗法使用的单克隆抗体和小分子 - 在肿瘤中达到了最高水平的细胞毒性水平,因为它们能够精确靶向癌细胞[2]。 这些治疗方法的可用性大大改善了患者预后。 更重要的是,如果所有肿瘤亚群都共享药物治疗的特征,则靶向药物可以完全缓解该疾病。 但是,癌性肿瘤很少同质。 它们由不同的基因组和转录组划分的各种细胞亚群,每个细胞亚群都可以产生对给定药物的独特反应和敏感性[3]。 结果,具有非同质性动态特征的异质性癌症亚群通常表现出对单药治疗的抵抗力,从而完全消除了该疾病[4]。 一旦消除了绝大多数肿瘤,少数剩余的癌细胞(最小残留疾病(MRD,请参见词汇表)生存下来,并继续增殖[4]。 不可避免的复发具有现在对初始治疗的疾病。 除了某些具有固有耐药性的肿瘤亚群外,癌细胞还可以通过多种机制获得抗药性,例如药物失活,靶替代和药物外排[1,5,6]。当前研究癌症耐药性治疗的研究方法概述随着分子靶向疗法,免疫疗法,化学疗法和放射疗法的发展已取得了重大进展[1]。靶向药物 - 由分子靶向疗法使用的单克隆抗体和小分子 - 在肿瘤中达到了最高水平的细胞毒性水平,因为它们能够精确靶向癌细胞[2]。这些治疗方法的可用性大大改善了患者预后。更重要的是,如果所有肿瘤亚群都共享药物治疗的特征,则靶向药物可以完全缓解该疾病。但是,癌性肿瘤很少同质。它们由不同的基因组和转录组划分的各种细胞亚群,每个细胞亚群都可以产生对给定药物的独特反应和敏感性[3]。结果,具有非同质性动态特征的异质性癌症亚群通常表现出对单药治疗的抵抗力,从而完全消除了该疾病[4]。一旦消除了绝大多数肿瘤,少数剩余的癌细胞(最小残留疾病(MRD,请参见词汇表)生存下来,并继续增殖[4]。不可避免的复发具有现在对初始治疗的疾病。除了某些具有固有耐药性的肿瘤亚群外,癌细胞还可以通过多种机制获得抗药性,例如药物失活,靶替代和药物外排[1,5,6]。对治疗的不敏感性现在可以恢复到90%的癌症相关死亡[7]。因此,必须提高我们对耐药性传播机制的理解,并准确预测哪种组合药物治疗将是针对特定癌症的最有效的。
摘要:研制了一种新型混合纳米胶束,即载阿霉素 (Dox) 的 Pluronic P123/聚乙二醇 2000-二硬脂酰磷脂酰乙醇胺纳米胶束混合胶束 (P123-PEG2000-DSPE (Dox)),以研究纳米制剂对乳腺癌 (BC) 多药耐药 (MDR) 的逆转作用。本研究旨在探索纳米制剂对 BC 多药耐药性的逆转作用。制备了 P123-PEG2000-DSPE (Dox) 混合胶束,然后通过动态光散射法、药物释放曲线和抗肿瘤活性(包括动态光散射法、MTT、免疫荧光、Western blot 和 Annexin V-PI)对 BC MCR-7 细胞和 BC 耐药细胞系 MCF-7R 进行表征。 P123-PEG2000-DSPE(Dox)通过抑制MDR1和p-gp的表达、减少药物外排、增加细胞内吞作用,逆转细胞耐药性,且效果优于PEG2000DSPE(Dox)。此外,对于载药组,P123-PEG2000-DSPE(Dox)的细胞毒性优于PEG2000-DSPE(Dox)和Dox。空药物载体PEG2000-DSPE和P123-PEG2000-DSPE没有细胞毒性。这些结果表明P123-PEG2000-DSPE(Dox)胶束可以有效逆转BC细胞的耐药性,是一种很有前途的抗肿瘤药物递送系统。
摘要:在抗癌治疗中使用多西他赛 (DTX) 等化疗药物通常与副作用和耐药性的发生有关,这会大大削弱药物的疗效。在这里,我们证明了用依诺肝素 (Enox) 包覆的自乳化药物输送系统 (SEDDS) 是一种在耐药肿瘤中输送 DTX 的有前途的策略。SEDDS 预浓缩物和释放介质 (水) 之间的 DTX 分配研究表明,在释放介质中稀释后,药物可以很好地保留在 SEDDS 中。所有 SEDDS 制剂在盐水中稀释后都显示出平均直径在 110 到 145 nm 之间的液滴,并且溶血活性可以忽略不计;灭菌后液滴大小保持不变。与对照组相比,含有 DTX 的 Enox 涂层 SEDDS 对不同实体肿瘤细胞(特征为高水平 FGFR)表现出更强的细胞生长抑制作用,这是由于 Enox 介导的 DTX 内化作用增加所致。此外,只有 Enox 涂层 SEDDS 能够通过抑制这两种主要 DTX 外排转运蛋白的活性,恢复表达 MRP1 和 BCRP 的耐药细胞对 DTX 的敏感性。这些制剂的有效性和安全性也在耐药非小细胞肺癌异种移植中得到体内证实。
NOD 样受体家族含吡啶结构域 3 (NLRP3) 炎症小体是一种寡聚复合物,可响应病原体感染的外源信号和非微生物来源的内源性危险信号而组装。当 NLRP3 炎症小体组装激活 caspase-1 时,它会促进炎症细胞因子白细胞介素-1B 和 IL-18 的成熟和释放。NLRP3 炎症小体的异常激活与各种疾病有关,包括慢性炎症、代谢和心血管疾病。NLRP3 炎症小体可以通过几种主要机制激活,包括 K + 外排、溶酶体损伤和线粒体活性氧的产生。有趣的是,代谢危险信号会激活 NLRP3 炎症小体以诱发代谢疾病。 NLRP3 包含三个关键结构域:N 端吡啶结构域、中央核苷酸结合结构域和 C 端富含亮氨酸重复结构域。蛋白质-蛋白质相互作用充当“踏板或刹车”,控制 NLRP3 炎症小体的激活。在这篇综述中,我们介绍了代谢危险信号诱导后或通过与 NLRP3 的蛋白质-蛋白质相互作用(可能发生在代谢疾病中)激活 NLRP3 炎症小体的潜在机制。了解这些机制将有助于开发治疗 NLRP3 相关代谢疾病的特定抑制剂。
多药耐药性(MDR)是当代临床实践中的一个严重挑战,主要是导致癌症药物疗法失败的原因。有几个实验证据将MDR与药物外运输蛋白P-gp的过表达联系起来,因此,需要发现新型的P-糖蛋白抑制剂来治疗或预防MDR并改善通过胃肠道系统的化学疗法吸收。在这项工作中,我们探索了一系列由父母化合物设计的新型吡啶喹又基因衍生物,这些衍生物被证明在增强MDR鼻咽癌(KB)中的抗癌药物方面有效。与参考化合物(MK-571,Novobiocin,verapamil)相比,具有荧光染料外排的功能最有效,最有选择性的抑制作用,当与化学疗法药物敏捷的浓度和非浓度浓度时,当与化学治疗剂的浓度相同时,MDR反转活性最高。分子建模与目标蛋白的比例为2:1的两种化合物10D结合模式。在健康的小胶质细胞中未观察到细胞毒性,脱靶研究表明缺乏Ca V 1.2通道阻滞。总而言之,我们的发现表明,10D可以通过在体外抑制P-gp传输功能,从而逆转癌症多药耐药性,从而成为一种新型的治疗辅助药。
摘要 肾细胞癌 (RCC) 是最常见的肾癌类型,是全球癌症发病率和死亡率的重要原因。抗血管生成酪氨酸激酶抑制剂 (TKI) 与免疫检查点抑制剂 (ICI) 联合使用是晚期 RCC 患者的一线治疗选择之一。这些疗法针对血管内皮生长因子受体 (VEGFR) 酪氨酸激酶通路和其他对癌症增殖、存活和转移至关重要的激酶。TKI 已显著改善晚期 RCC 患者的无进展生存期 (PFS) 和总生存期 (OS)。然而,随着耐药性的产生,几乎所有患者最终都会因使用这些药物而出现病情进展。本综述概述了 RCC 中的 TKI 耐药性,并探讨了不同的耐药机制,包括替代促血管生成途径的上调、上皮间质转化 (EMT)、由于外排泵和溶酶体隔离导致的细胞内药物浓度降低、肿瘤微环境的改变(包括骨髓衍生细胞 (BMDC) 和肿瘤相关成纤维细胞 (TAF))以及单核苷酸多态性 (SNP) 等遗传因素。全面了解这些机制为开发能够有效克服 TKI 耐药性的创新治疗方法打开了大门,从而改善了晚期 RCC 患者的预后。
假单胞菌具有代谢灵活性,可以在不同的植物宿主上茁壮成长。然而,宿主滥交所需的代谢适应性尚不清楚。在这里,我们通过采用 RNAseq 并比较东湖假单胞菌 P482 对两种植物宿主(番茄和玉米)根系分泌物的转录组反应来弥补这一知识空白。我们的主要目标是找出这两种反应之间的差异和共同点。仅由番茄分泌物上调的途径包括一氧化氮解毒、铁硫簇的修复、通过对氰化物不敏感的细胞色素 bd 进行呼吸以及氨基酸和/或脂肪酸的分解代谢。前两个表明测试植物的分泌物中存在 NO 供体。玉米特异性地诱导了 MexE RND 型外排泵的活性和铜耐受性。与运动相关的基因由玉米诱导,但被番茄抑制。对渗出液的共同反应似乎受到来自植物的化合物和来自其生长环境的化合物的影响:砷抗性和细菌铁蛋白合成上调,而硫同化、柠檬酸铁和/或其他铁载体的感知、血红素获取和极性氨基酸的运输下调。我们的研究结果为探索植物相关微生物的宿主适应机制提供了方向。
摘要 尽管肿瘤学领域取得了科学进展,但癌症仍然是全球死亡的主要原因。头颈部鳞状细胞癌 (HNSCC) 的分子和细胞异质性是导致癌症治疗临床反应不可预测和失败的重要因素。癌症干细胞 (CSC) 被认为是能够驱动和维持肿瘤发生和转移的肿瘤细胞亚群,导致不同类型癌症的预后不良。CSC 表现出高度的可塑性,能够快速适应肿瘤微环境的变化,并且本质上对当前的化疗和放疗具有抵抗力。CSC 介导的治疗耐药性的机制尚不完全清楚。然而,它们包括 CSC 用于克服治疗带来的挑战的不同策略,例如激活 DNA 修复系统、抗凋亡机制、获得静止状态和上皮-间质转化、增加药物外排能力、缺氧环境、CSC 生态位保护、干性相关基因的过度表达和免疫监视。彻底消除 CSC 似乎是实现肿瘤控制和提高癌症患者总体生存率的主要目标。本综述将重点介绍 CSC 对 HNSCC 中的放疗和化疗具有抗性的多因素机制,支持使用可能的策略来克服治疗失败。
横向分支是影响作物产量的关键农艺性状。在番茄(溶胶lycopersicum)中,横向分支过多是不利的,并导致了巨大的劳动力和管理成本。因此,优化横向分支是番茄育种的主要目标。尽管已经报道了番茄中与横向分支有关的许多基因,但其网络基础的分子机制仍然难以捉摸。在这项研究中,我们发现WRKY基因WRKY-B(用于WRKY桥梁)的表达曲线与生长素依赖性的腋芽发育过程有关。由CRISPR/CAS9编辑系统产生的WRKY-B突变体的侧向分支更少,而WRKY-B过表达线的侧向分支比野生型植物更多。此外,WRKY-B可以直接瞄准众所周知的分支基因盲(BL)和生长素外排载体基因PIN4以激活其表达。BL和PIN4突变体均表现出降低的侧向分支,类似于WRKY-B突变体。WRKY-B,BL和PIN4突变植物的腋芽芽中的IAA含量明显高于野生型植物中的含量。此外,WRKY-B还可以直接瞄准AUX/IAA基因IAA15并抑制其表达。总而言之,WRKY-B在BL,PIN4和IAA15的上游进行了调节,以调节番茄横向分支的发展。