纳米细胞聚合物(即细胞和壁在纳米范围内的细胞聚合物)于 21 世纪初首次生产出来,Yokoyama 等人 [ 1 ] 的研究是该领域的主要先例,他们利用超临界二氧化碳生产了纳米细胞结构。然而,直到十年后,这一研究领域才开始显着发展,吸引了多个国际研究小组致力于获得细胞在纳米范围内的细胞聚合物 [ 2 ]。2010 年至 2014 年,块体纳米细胞泡沫生产的基础得以建立,CO 2 气体溶解发泡技术迅速被证明是此类材料最合适的生产路线(该技术的详细信息和理论基础可在其他地方找到)[ 2 – 4 ]。随着技术的不断进步(如更高的饱和压力、更低的饱和温度、更快的压降速率)和从无机纳米颗粒到嵌段共聚物的多种成核剂的出现,我们得到了大量具有亚微米和纳米泡孔的多孔聚合物[2]。尽管多种聚合物均可实现亚微米泡孔,但无定形聚合物如聚醚酰亚胺 (PEI)、聚苯乙烯 (PS) 以及尤其是聚甲基丙烯酸甲酯 (PMMA) 提供了最佳的纳米蜂窝结构,其泡孔尺寸甚至低于 100nm,并且密度显著降低[2]。这些年来,在泡孔尺寸和相对密度降低方面取得的不断进展提高了人们对这些先进材料的期望,旨在实现更小的泡孔尺寸和更大的孔隙率。此外,根据理论预测和先前的经验,泡孔尺寸减小到微米范围对这些材料的物理性能有积极影响,纳米蜂窝聚合物泡沫有望表现出卓越的物理性能。例如,纳米泡沫可以提高隔热性能、降低介电常数、增强机械性能,甚至提高光学透明度 [2,3]。Costeux [2] 在 2014 年仔细分析了该领域的这一非凡发展和这些期望,指出了其他尚未解决的挑战,例如开孔纳米泡沫结构的生产、制定策略以消除或避免气体溶解发泡典型的固体外皮的形成,以及开发生产此类材料的连续工艺的必要性。因此,随着纳米泡沫领域自 2015 年以来持续增长,有必要对其进展进行批判性分析,评估是否满足了预期、对其理解的进展、已解决和正在进行的挑战,以及保持该领域增长的关键关注点。在此,该分析的结构如下。首先,简要总结了纳米泡沫生产的最新进展,重点突出最相关的成就和挑战。然后,讨论其物理性质研究的进展,随后评估克服上述挑战的成功程度。最后,从这一批判性分析中得出的主要思想,确定了
描述食物过敏是一种用来描述对与触发食物蛋白结合的IgE抗体介导的食物的不良免疫反应的术语;该术语还用于表明对食物的任何不良免疫反应(例如,包括细胞介导的反应)。食物过敏在婴儿/儿童(3岁以下约6%)中比成人(约2%)更为常见,并且患病率似乎正在增加。对牛奶,鸡蛋,小麦和大豆过敏的儿童食物过敏,最常见(到5岁时〜85%),而对花生,树坚果和海鲜过敏通常并不多。食物过敏是部分遗传确定的,并且通常与特应性疾病的个人或家族史有关。随着食物摄入挑战测试,患者摄入了怀疑敏感性的食物,临床医生观察到与过敏反应有关的症状和监测迹象。如果双盲,患者和医生都蒙蔽了双眼。双盲挑战通常在医院或医师办公室进行,那里有复苏设备。单盲测试使患者视而不见,在开放挑战中,患者和提供者均未蒙蔽。虽然双盲挑战是金标准,但由于测试的费用和复杂性,但并不经常执行。挑衅性测试,也称为挑衅 - 中性化和连续稀释滴定测试(P-N和S- D),是体内技术,试图通过评估测试剂量唤起症状并诱导Wheal生长的能力来诊断敏感性。测试有3种变化,在测试过敏原的给药途径上有所不同:脑上,皮下和/或舌下。这些有争议的技术主要由临床生态学家采用。在P-N方法中,溶于甘油,苯酚或蒸馏水中的每个抗原的串行稀释液被外皮内施用。该方法的目标是:1)确定引起症状的物质,2)发现这些物质的稀释液适合治疗。从经验上讲,已经发现,在每次稀释后十分钟的测试期内,其他稀释物的某些稀释液会促进患者特征症状的变化。P-N方法适用于多种过敏原:食物,花粉,灰尘,模具和化学物质。在P-N方法中,中和剂量是一种症状缓解的稀释。稀释和较弱的稀释液都会引起症状。因此,剂量反应曲线通常是非单调的(即双相)。P-N方法可以单独使用,或与症状反应结合使用。一种变体(假定在儿童中更有用)涉及通过舌下滴剂的挑衅。使用这种方法,症状挑衅和中和是诊断敏感性的唯一标准。舌下P-N经常用于测试食用色素和某些食物化学物质,并且经常
解释人体各种器官的总形态,结构和功能。描述各种稳态机制及其失衡。确定人体不同系统的各种组织和器官。执行与特殊感官和神经系统有关的各种实验。感谢每个系统单元的不同器官的协调工作模式 - 我10小时的人体定义和解剖学和生理学范围,结构组织和身体系统的水平,基本生命过程,体内稳态,基本解剖学术语。细胞结构和细胞功能的细胞水平,跨细胞膜的转运,细胞分裂,细胞连接。 细胞通信的一般原理,细胞外信号分子,细胞内信号传导的形式激活:a)接触依赖性b)旁分泌c)突触d)内分泌组织组织分类的组织,结构,肌肉,肌肉和连接组织的结构,位置和功能的内分泌组织分类水平。 中枢神经系统:脑膜,大脑的心室和脑脊液。 大脑的结构和功能(脑,脑干,小脑),脊髓(总结构,传入和效率神经区的功能,反射活动)单位 - IV 08小时外周神经系统:外周神经系统的分类:交感神经和副交感神经的结构和功能。 脊柱和颅神经的起源和功能。 特殊的感官:眼睛,耳朵,鼻子和舌头及其疾病的结构和功能。细胞结构和细胞功能的细胞水平,跨细胞膜的转运,细胞分裂,细胞连接。细胞通信的一般原理,细胞外信号分子,细胞内信号传导的形式激活:a)接触依赖性b)旁分泌c)突触d)内分泌组织组织分类的组织,结构,肌肉,肌肉和连接组织的结构,位置和功能的内分泌组织分类水平。中枢神经系统:脑膜,大脑的心室和脑脊液。大脑的结构和功能(脑,脑干,小脑),脊髓(总结构,传入和效率神经区的功能,反射活动)单位 - IV 08小时外周神经系统:外周神经系统的分类:交感神经和副交感神经的结构和功能。脊柱和颅神经的起源和功能。特殊的感官:眼睛,耳朵,鼻子和舌头及其疾病的结构和功能。单位 - II 10小时的外皮系统结构和皮肤骨骼系统划分的骨骼系统,骨骼类型,显着特征,显着特征以及骨骼骨骼骨骼骨骼肌肉的骨骼组织的功能神经元,神经元,神经纤维的分类和特性,电生理学,动作电位,神经冲动,受体,突触,神经递质。
很难想象一个没有视觉的世界 - 眼睛无处不在。无可否认,视力的演变已成为地球生活历史上最深刻的事件之一。动物使用其视觉系统来找到食物,庇护所和伴侣,以及在其他无数行为中,可以增强其舒适性。另一方面,视觉也是由视觉引导的捕食者猎杀的众多猎物的敌人。对于此类猎物,避免被其潜在捕食者的视觉系统感知到与捕食者的视野一样重要。地球通过进化时间目睹了数十亿种猎物,如今,一些最引人注目的适应是捕食动物以捕食对选择的反应。“ camou-flig”是一个伞术,包括防止检测或识别的策略(Ruxton等人2018)。例如,许多猎物匹配背景的颜色和图案,即背景匹配(Endler 1978)。其他人的颜色模式破坏了身体的外观,即破坏性色(Thayer 1909)。还有其他与捕食者(即化妆舞会)不可食用的物体非常相似的物体(Cott 1940)。camou -fle年龄也可能涉及其他感觉系统,例如嗅觉,使化学伪装的猎物可以逃脱检测(Ruxton 2009)。Camou -flage吸引了几个世纪的生物学家和自然历史学家,并为达尔文和华莱士提供了令人信服的自然选择例子(Stevens and Merilaita 2009)。最近的研究(Wu等人1970)。虽然很容易理解有效的视觉迷恋年龄的有效性,但我们直到最近才开始阐明使凸轮型模式有效的复杂性,在什么条件下,在特定的camou型模式下是成功的,以及操纵视觉感知的机制。通过在过去的二十年中进行的研究,我们对凸轮的运作方式有了更深入,更广泛,更细微的了解。2024)‘作为埃利夫(Elife)出版的叶霍普斯(Leafhoppers)作为抗羊皮涂层的brochosomes是迷恋文学的令人兴奋的补充。研究的前提很简单。一个捕食者需要从其猎物中反映出的光,应选择猎物以最大程度地减少反射。由于许多猎物的自然背景包括具有低反射的物体,例如叶子,树皮和土壤,因此其体内的反射较低也可以最大程度地减少猎物与背景的对比,因此,其显着性。先前在许多昆虫中已经报道了抗反射涂料,包括蛾眼中的抗涂料(Bernhard等人Wu等人的研究。(2024)的重点是称为brochosomes的结构,在叶霍普珀(Cicadellidae)中广泛发现,这是一大群具有22,000多种物种的昆虫。brochosomes,第一次描述了1952年(Tulloch等人1952),是主要包括脂质和蛋白质的纳米结构。“ brochosom”这个名字来自希腊语(brochos)和身体(soma)的希腊语单词(Wang and Wong 2024)。分子系统发育分析表明,小册子在叶霍普斯的祖先中曾经演变。2024)。它们是空心的乳球形结构,通常直径约200-700 nm,表面形成常规的五边形和六边形凹陷(Rakitov 1999; Fure 1)。叶霍普斯在马尔皮亚小管中合成小册子,并以胶体悬浮液的形式通过后肠分泌(Rakitov 1996; Wang等人。通过称为“膏药”的行为,将brochosoms悬浮液应用于外皮上。膏药的行为随着物种而异。在大多数物种中,成年人用后腿从肛门上捡起一滴悬架,并将其应用于身体表面。流体干燥以留下小bro的沉积物(Rakitov 2002)。膏药后面是修饰,叶霍珀将其身体摩擦在其
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。