摘要简介生物介绍被定义为与复杂的生物系统相互作用的合成和/或生物学物质的有组织组合,以治疗,替换或重塑组织和器官。组织生物工程采用多种方法,包括使用生物和合成支架以及涉及干细胞和细胞因子的相互作用。本综述评估了生物学合成的技术和方法,以及它们在动物和人类模型中的效率。材料和方法使用PubMed,Lilacs,Scielo和Cochrane数据库进行了系统文献综述,该数据库采用了特定的描述符。分析的重点是确定研究的起源国家并对所使用的技术和资源进行分类,目的是为选择在重建整形手术中应用生物效应的策略选择。在37个选定的文章中的结果,15个集中于体外实验,14个在体内实验上,以及8种采用了这两种方法。研究进一步分为3个主要亚主题:掺杂(18篇文章),血管生成(10篇文章)和软骨生成(9篇文章),所有这些(9篇文章)都与组织重建有关。结论在再生医学中使用生物材料的进展是有希望的,实验结果与当代整容手术实践息息相关。虽然人类的应用仍然有限,但干细胞和生长因子的潜力表明未来的发展显着,需要进一步的重点研究。本评论阐明了生物材料使用的技术和进步,强调了它们对重建整形手术的技术演变的影响。
面具以两张塑料片开始。制作口罩的治疗射线照相师会在特殊设计的烤箱中逐个温暖它们,直到它们柔软而柔软。第一张纸是在头部背面模制的,第二和第三张纸在您的脸上轻轻模制。塑料会很温暖,但是这个过程并不舒服。一个小的塑料矩形将安装在面罩的前面,以便您轻轻地静置牙齿(如上图所示)。这也有助于保持您的静止。
摘要 人工智能 (AI) 技术在日常生活的许多领域越来越普遍。尽管人工智能的广泛应用仍然有限,但医疗保健行业对此感到担忧。胸外科医生应该意识到可能影响其日常实践的新机会,无论是通过直接使用人工智能技术还是通过相关医学领域(放射学、病理学和呼吸医学)间接使用。本文的目的是回顾与胸外科相关的人工智能应用,并讨论其在欧盟应用的局限性。人工智能的关键方面将通过临床途径开发,从肺癌诊断开始,然后是决策的预后辅助程序,然后是机器人手术,最后是人工智能的局限性、与医学相关的法律和伦理问题。医生和外科医生必须具备人工智能的基本知识,以了解它如何影响医疗保健,并考虑他们可能与这项技术互动的方式。事实上,相关医学专业之间的协同作用以及机器和外科医生之间的协同关系可能会加速人工智能在增强外科护理方面的能力。
外科服务需求证明 (CON) 审查标准(根据经修订的 1978 年公共法案第 368 号法案第 22215 节以及经修订的 1969 年公共法案第 306 号法案第 7 和 8 节授予 CON 委员会的权力,即密歇根州汇编法第 333.22215、24.207 和 24.208 节。)第 1 节 适用性第 1 节 (1) 这些标准是批准启动、更换、扩展或获取外科设施提供的外科服务以及根据法典第 222 部分提供这些服务的要求。独立外科门诊设施、根据第 XVIII 章认证的门诊手术中心或根据法典第 215 部分获得许可并提供住院或门诊手术服务的医院外科部门提供的外科服务均属于受保临床服务。该部门应在应用法典第 22225(1) 节(即密歇根州汇编法第 333.22225(1) 节)和法典第 22225(2)(c) 节(即密歇根州汇编法第 333.22225(2)(c) 节)时使用这些标准。第 2 节 定义 第。 2. (1) 就这些标准而言:(a) “门诊手术中心”或“ASC”是指根据第 42 篇第 416 部分的规定由 Medicare 认证为 ASC 的任何独立实体,该实体专门为在 CON 批准的手术室为不需要住院的患者提供手术服务而运营,并根据法典第 222 部分定义为医疗机构。(b) “烧伤护理”是指在经核实符合美国烧伤协会于 1988 年 3 月发布的“烧伤中心开发和运营指南”或烧伤中心的同等标准的持牌医院场所为烧伤患者提供的手术服务。(c) “需求证明委员会”或“委员会”是指根据法典第 22211 节(即密歇根州汇编法第 333.22211 节)设立的委员会。 (d) “法规”是指经修订的 1978 年公共法案第 368 号法案,即《密歇根州汇编法》第 333.1101 节及以下各节。 (e) “危重病人医院”或“cah”是指根据 42 cfr 485.606 由 cms 指定的医院。 (f) “膀胱镜检查”是指使用膀胱镜对尿道进行直接目视检查。 (g) “膀胱镜检查病例”是指在手术室进行一次或多次膀胱镜检查的单次就诊。 (h) “专用透析接入中心”是指专门用于透析接入病例的 FSOF 或 ASC。 (i) “专用内窥镜或膀胱镜手术室”是指专门用于内窥镜或膀胱镜检查病例的房间。(j) “部门”是指密歇根州卫生与公众服务部 (MDHHS) (k) “透析通路”是指用于为患者提供透析服务的物理管道。 (l) “透析通路病例”是指在为患者执行一项或多项程序期间单次进入手术室,以建立或维持透析通路,从而为治疗晚期慢性肾病、终末期肾病或其他需要透析的合格疾病提供血液透析或腹膜透析。这些程序可能包括静脉造影、中央静脉透析通路装置的荧光透视引导、血管导管置入、修复、移除和更换、血管导管血栓溶解、清除阻塞物、瘘管造影、
神经血管外科是一门复杂的外科亚专科,涉及使用血管内和显微外科技术诊断和治疗脑和脊髓的血管病变。在美国,神经血管疾病是一场公共卫生危机,造成巨额医疗费用,影响数百万人的生活 (1,2)。然而,在过去几十年里,美国的神经血管外科发生了巨大变化,这得益于血管内方法和成像方式的快速发展,可以精确有效地治疗各种疾病,例如中风、动脉瘤、动静脉畸形 (AVM) 和慢性硬膜下血肿 (cSDH) (3)。如今,美国的神经血管内手术队伍由神经外科医生、神经病学家和放射科医生组成,他们接受了广泛的培训,以应对日益加重的脑血管疾病负担 (4,5),而开放式神经血管外科仍然是血管神经外科医生的专长。目前,血管内手术约占血管神经外科医生执业的 75% (6),该领域正转向安全高效的微创神经血管内手术,以迎合患者对微创干预的偏好,将开放手术保留用于血管内手术不适合的复杂病例或血管内手术出现并发症的情况 (7)。尽管取得了这些进展,神经血管外科领域仍面临挑战,包括获得神经血管干预的地区差异以及开放手术技术的病例数量下降,这影响了开放和血管内技术之间的培训和技能转移。虽然许多评论探讨了神经血管外科的进展,但大多数都关注特定的创新或全球趋势,而没有强调美国医疗保健系统内独特的挑战和机遇。本评论旨在通过全面概述美国神经血管外科的发展来弥补这一差距,重点关注培训途径、劳动力趋势和关键技术进步。与以往文献不同的是,这篇评论还探讨了医疗服务可及性方面的区域差异以及开放手术病例数量下降所带来的挑战,并提出了维持神经血管手术人员平衡的策略。此外,它还对人工智能 (AI)、机器人系统和增强现实 (AR) 等新兴技术提供了前瞻性的视角,以及它们如何
糖尿病及其并发症对全球超过5.36亿人的健康构成严重威胁。近年来,糖尿病的疾病负担显著增加,预计未来30年仍将加剧。1通过药物有效管理血糖(BG)可显著降低糖尿病相关并发症的风险,包括心血管并发症和眼科并发症。目前,1型糖尿病的主要治疗方法是皮下注射胰岛素。注射后,胰岛素被吸收进入外周血流,并分布到脂肪组织、肌肉和肝脏。然而,这种方法面临着患者依从性低、低血糖风险、
这项研究旨在使用乌洛皮亚视频(Tureopedia Videos)强调膀胱癌教育的批判性知识,这是一个由Turkiye的泌尿外科手术协会开发的电子学习平台。我们分析了2016年1月至2023年10月之间在乌洛皮省上传的膀胱癌的90个教育视频。两位经验丰富的泌尿科医生独立审查了这些视频,重点介绍了所介绍的基本信息。在90个视频中,有43个(47.8%)解决了非肌肉侵入性膀胱癌,39(43.3%)的重点是肌肉侵入性膀胱癌,而8(8.9%)覆盖了两者。关键主题包括Calmette-guerin(BCG)疗法,BCG衰竭后的治疗选择和膀胱切除术程序。乌洛皮亚是泌尿外科居民和专家的宝贵资源,提供了最新的信息和专家见解。
协调中心:华盛顿大学医学院首席研究员:道格拉斯·R·阿德金斯(Douglas R. Adkins),医学博士电话:(314)362-4471电子邮件:dadkins@wustl.edu sub-Investigators机构机构Ravindra Uppaluri,M.D。,Ph.D。 Dana Farber癌症研究所耳鼻喉科Max Artyomov博士华盛顿大学病理学/免疫学丽贝卡·切诺克(Rebecca Chernock),医学博士华盛顿大学头部和颈部病理学Hiram Gay,医学博士 华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士 华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学头部和颈部病理学Hiram Gay,医学博士华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。华盛顿大学耳鼻喉科Randal Paniello,医学博士华盛顿大学耳鼻喉科Jay Piccirillo,医学博士华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684